These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35208043)

  • 1. Investigation of Temperature-Dependent Magnetic Properties and Coefficient of Thermal Expansion in Invar Alloys.
    Huang L; Zhou Y; Guo T; Han D; Gu Y; Song C; Pan F
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strengthening of the Fe-Ni Invar Alloy Through Chromium.
    Sui Q; He J; Zhang X; Sun Z; Zhang Y; Wu Y; Zhu Z; Zhang Q; Peng H
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Linear Thermal Expansion of Additively Manufactured Multi-Material Joining between Invar and Steel.
    Arbogast A; Roy S; Nycz A; Noakes MW; Masuo C; Babu SS
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal expansion coefficients in Invar processed by selective laser melting.
    Harrison NJ; Todd I; Mumtaz K
    J Mater Sci; 2017; 52(17):10517-10525. PubMed ID: 32025047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic thermal expansion and cooperative Invar and anti-Invar effects in mn alloys.
    Yokoyama T; Eguchi K
    Phys Rev Lett; 2013 Feb; 110(7):075901. PubMed ID: 25166383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Concentration Heterogeneity and Thermal Expansion Coefficient in the Metastable Invar FeNi
    Shabashov V; Sagaradze V; Zamatovskii A; Kozlov K; Kataeva N; Danilov S
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anharmonicity and quantum effects in thermal expansion of an Invar alloy.
    Yokoyama T; Eguchi K
    Phys Rev Lett; 2011 Aug; 107(6):065901. PubMed ID: 21902344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Defects and Microstructure on the Thermal Expansion Behavior and the Mechanical Properties of Additively Manufactured Fe-36Ni.
    Kahlert M; Wegener T; Laabs L; Vollmer M; Niendorf T
    Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invar Effect of the Fe
    Fu C; Huang J; Jiang Y; Li H
    J Phys Chem Lett; 2022 Jul; 13(29):6644-6650. PubMed ID: 35838642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Addition of Ti Particles and Processing Condition on Microstructure and Properties of Selectively Laser-Melted Invar 36 Alloy.
    Liu H; Pan X; Sun P; Liu Y; Qiu C
    3D Print Addit Manuf; 2024 Feb; 11(1):24-39. PubMed ID: 38389685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: quantitative theory of the Invar effect.
    Khmelevskyi S; Turek I; Mohn P
    Phys Rev Lett; 2003 Jul; 91(3):037201. PubMed ID: 12906444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero thermal expansion in YbGaGe due to an electronic valence transition.
    Salvador JR; Guo F; Hogan T; Kanatzidis MG
    Nature; 2003 Oct; 425(6959):702-5. PubMed ID: 14562099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The measurement of thermal expansion coefficient of Co-Cr alloy fabricated by selective laser melting].
    Tian XM; Zeng L; Wei B; Huang YF
    Shanghai Kou Qiang Yi Xue; 2015 Dec; 24(6):687-9. PubMed ID: 27063119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SU-E-T-303: Practical Considerations for Maximizing Heat Production in Novel Thermo-Brachytherapy Seed Prototype.
    Gautam B; Shvydka D; Parsai E
    Med Phys; 2012 Jun; 39(6Part14):3773. PubMed ID: 28517278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant negative thermal expansion in magnetic nanocrystals.
    Zheng XG; Kubozono H; Yamada H; Kato K; Ishiwata Y; Xu CN
    Nat Nanotechnol; 2008 Dec; 3(12):724-6. PubMed ID: 19057591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires.
    Kusy RP; Whitley JQ
    Am J Orthod Dentofacial Orthop; 2007 Feb; 131(2):229-37. PubMed ID: 17276864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Expansion and Magnetostriction of Laves-Phase Alloys: Fingerprints of Ferrimagnetic Phase Transitions.
    Zhou C; Bao H; Matsushita Y; Chang T; Chen K; Zhang Y; Tian F; Zuo W; Song X; Yang S; Ren Y; Ren X
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31151148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Nb and Mo Substitution on the Structure and Magnetic Properties of a Rapidly Quenched Fe
    Hawelek L; Zackiewicz P; Wojcik A; Hudecki J; Warski T
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Solidification of Invar Alloy.
    He H; Yao Z; Li X; Xu J
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic and thermodynamic properties of face-centered cubic Fe-Ni alloys.
    Lavrentiev MY; Wróbel JS; Nguyen-Manh D; Dudarev SL
    Phys Chem Chem Phys; 2014 Aug; 16(30):16049-59. PubMed ID: 24964377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.