These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35208146)

  • 1. Strain Hardening of Polypropylene Microfiber Reinforced Composite Based on Alkali-Activated Slag Matrix.
    Smirnova OM; Menendez Pidal I; Alekseev AV; Petrov DN; Popov MG
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of binder and activator composition on the characteristics of alkali-activated slag-based concrete.
    Heshmat M; Amer I; Elgabbas F; Khalaf MA
    Sci Rep; 2024 Jun; 14(1):13502. PubMed ID: 38866835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Strength and Fracture Characteristics of One-Part Strain-Hardening Green Alkali-Activated Engineered Composites.
    Hossain KMA; Sood D
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Strain-Hardening Behaviour of Fibre-Reinforced Alkali-Activated Fly Ash Cement.
    Lee H; Vimonsatit V; Mendis P; Nassif A
    Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31816855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive Strength and Chloride Ion Penetration Resistance of GGBFS-Based Alkali-Activated Composites Containing Ferronickel Slag Aggregates.
    Lee JI; Kim CY; Yoon JH; Choi SJ
    Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkali-Activated Slag Coatings for Fire Protection of OPC Concrete.
    Kielė A; Vaičiukynienė D; Bertašius Š; Krivenko P; Bistrickaitė R; Jocius V; Ramukevičius D
    Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers.
    Vilaplana JL; Baeza FJ; Galao O; Zornoza E; Garcés P
    Materials (Basel); 2013 Oct; 6(10):4776-4786. PubMed ID: 28788359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC).
    Chernysheva N; Lesovik V; Fediuk R; Vatin N
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-Hardening and High-Ductile Behavior of Alkali-Activated Slag-Based Composites with Added Zirconia Silica Fume.
    Choi JI; Park SE; Nguyễn HH; Cha SL; Lee BY
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31717893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength Characteristics of Alkali-Activated Slag Mortars with the Addition of PET Flakes.
    Kocot A; Ćwirzeń A; Ponikiewski T; Katzer J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Properties of Alkali-Activated Slag Fiber Composites Varying with Fiber Volume Fractions.
    Lim HJ; Cho CG; You JY; Jeong JJ
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance-Based Design of Ferronickel Slag Alkali-Activated Concrete for High Thermal Load Applications.
    Arce A; Komkova A; Papanicolaou CG; Triantafillou TC
    Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Slag on the Strength and Shrinkage Properties of Metakaolin-Based Geopolymers.
    Zhan J; Li H; Pan Q; Cheng Z; Li H; Fu B
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of ancient copper slags in Portland cement and alkali activated cement matrices.
    Nazer A; Payá J; Borrachero MV; Monzó J
    J Environ Manage; 2016 Feb; 167():115-23. PubMed ID: 26615227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geopolymer Based on Mechanically Activated Air-cooled Blast Furnace Slag.
    Tole I; Rajczakowska M; Humad A; Kothari A; Cwirzen A
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32143319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calorimetric Studies of Alkali-Activated Blast-Furnace Slag Cements at Early Hydration Processes in the Temperature Range of 20-80 °C.
    Usherov-Marshak A; Vaičiukynienė D; Krivenko P; Bumanis G
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete.
    Mohamed OA
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical and Self-Sensing Properties of Alkali-Activated Slag Composite with Graphite Filler.
    Rovnaník P; Kusák I; Bayer P; Schmid P; Fiala L
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of Preplaced Aggregate Concrete Fabricated with Alkali-Activated Slag/Fly Ash Cements.
    Siddique S; Kim H; Son H; Jang JG
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Mixture Variables on Durability for Alkali-Activated Slag Cementitious.
    Hung CC; Wu YC; Lin WT; Chang JJ; Yeih WC
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30424554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.