BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 35208148)

  • 21. Changes in collagen fibril pattern and adhesion force with collagenase-induced injury in rat Achilles tendon observed via AFM.
    Lee GJ; Choi S; Chon J; Yoo S; Cho I; Park HK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):773-7. PubMed ID: 21446543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adhesion force microscopy is sensitive to the charge distribution at the surface of single collagen fibrils.
    Mull V; Kreplak L
    Nanoscale Adv; 2022 Nov; 4(22):4829-4837. PubMed ID: 36381506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the Nano-Surface of Collagenous and Other Fibrotic Tissues with AFM.
    Stylianou A; Gkretsi V; Patrickios CS; Stylianopoulos T
    Methods Mol Biol; 2017; 1627():453-489. PubMed ID: 28836219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observation of human corneal and scleral collagen fibrils by atomic force microscopy.
    Yamamoto S; Hitomi J; Sawaguchi S; Abe H; Shigeno M; Ushiki T
    Jpn J Ophthalmol; 2000 May; 44(3):318. PubMed ID: 10913659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface ultrastructure of collagen fibrils and their association with proteoglycans in human cornea and sclera by atomic force microscopy and energy-filtering transmission electron microscopy.
    Miyagawa A; Kobayashi M; Fujita Y; Hamdy O; Hirano K; Nakamura M; Miyake Y
    Cornea; 2001 Aug; 20(6):651-6. PubMed ID: 11473170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic force microscopy application in biological research: a review study.
    Vahabi S; Nazemi Salman B; Javanmard A
    Iran J Med Sci; 2013 Jun; 38(2):76-83. PubMed ID: 23825885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta.
    Kemp AD; Harding CC; Cabral WA; Marini JC; Wallace JM
    J Struct Biol; 2012 Dec; 180(3):428-38. PubMed ID: 23041293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of mineralized collagen fibrils as influenced by demineralization.
    Balooch M; Habelitz S; Kinney JH; Marshall SJ; Marshall GW
    J Struct Biol; 2008 Jun; 162(3):404-10. PubMed ID: 18467127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Observation of human corneal and scleral collagen fibrils by atomic force microscopy].
    Yamamoto S; Hitomi J; Sawaguchi S; Abe H; Shigeno M; Ushiki T
    Nippon Ganka Gakkai Zasshi; 1999 Nov; 103(11):800-5. PubMed ID: 10589238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale Swelling Heterogeneities in Type I Collagen Fibrils.
    Spitzner EC; Röper S; Zerson M; Bernstein A; Magerle R
    ACS Nano; 2015 Jun; 9(6):5683-94. PubMed ID: 25961780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro synthesis of native, fibrous long spacing and segmental long spacing collagen.
    Loo RW; Goh JB; Cheng CC; Su N; Goh MC
    J Vis Exp; 2012 Sep; (67):e4417. PubMed ID: 23023198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing nano-scale adhesion force between AFM and acid demineralized intertubular dentin: Moist versus dry dentin.
    Fawzy AS; Farghaly AM
    J Dent; 2009 Dec; 37(12):963-9. PubMed ID: 19699256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualization of the nanoscale assembly of type I collagen on PLA by AFM.
    Liang Z; Zhou C; Zeng R; Cai H; Guo Z
    Scanning; 2010; 32(2):104-11. PubMed ID: 20549715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insight into the shortening of the collagen fibril D-period in human cornea.
    Jastrzebska M; Tarnawska D; Wrzalik R; Chrobak A; Grelowski M; Wylegala E; Zygadlo D; Ratuszna A
    J Biomol Struct Dyn; 2017 Feb; 35(3):551-563. PubMed ID: 26872619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid fluorescence-AFM explores articular surface degeneration in early osteoarthritis across length scales.
    Tschaikowsky M; Neumann T; Brander S; Haschke H; Rolauffs B; Balzer BN; Hugel T
    Acta Biomater; 2021 May; 126():315-325. PubMed ID: 33753314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of human corneal and scleral collagen fibrils by atomic force microscopy.
    Yamamoto S; Hitomi J; Sawaguchi S; Abe H; Shigeno M; Ushiki T
    Jpn J Ophthalmol; 2002; 46(5):496-501. PubMed ID: 12457907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fibrous long spacing type collagen fibrils have a hierarchical internal structure.
    Wen CK; Goh MC
    Proteins; 2006 Jul; 64(1):227-33. PubMed ID: 16609970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of collagen fibrils produced by osteosarcoma cells using atomic force microscopy.
    Hoshi O
    Med Mol Morphol; 2014 Dec; 47(4):201-6. PubMed ID: 24197468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano-level morphology of scar tissue after myocardial infarction.
    Wu Z; Curaj A; Staudt M; Ponomariov V; Decker L; Rusu M
    Discoveries (Craiova); 2015 Sep; 3(3):e49. PubMed ID: 32309572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic force microscopic studies of isolated collagen fibrils of the bovine cornea and sclera.
    Yamamoto S; Hitomi J; Shigeno M; Sawaguchi S; Abe H; Ushiki T
    Arch Histol Cytol; 1997 Oct; 60(4):371-8. PubMed ID: 9412740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.