BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35208237)

  • 1. Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly,
    Moos M; Korbelová J; Štětina T; Opekar S; Šimek P; Grgac R; Koštál V
    Metabolites; 2022 Feb; 12(2):. PubMed ID: 35208237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva.
    Kučera L; Moos M; Štětina T; Korbelová J; Vodrážka P; Des Marteaux L; Grgac R; Hůla P; Rozsypal J; Faltus M; Šimek P; Sedlacek R; Koštál V
    J Exp Biol; 2022 Apr; 225(8):. PubMed ID: 35380003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mortality caused by extracellular freezing is associated with fragmentation of nuclear DNA in larval haemocytes of two drosophilid flies.
    Štětina T; Koštál V
    J Exp Biol; 2023 Nov; 226(21):. PubMed ID: 37846596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen.
    Kostál V; Zahradnícková H; Šimek P
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13041-6. PubMed ID: 21788482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress.
    Grgac R; Rozsypal J; Des Marteaux L; Štětina T; Koštál V
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2211744119. PubMed ID: 36191219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect mitochondria as targets of freezing-induced injury.
    Štětina T; Des Marteaux LE; Koštál V
    Proc Biol Sci; 2020 Jul; 287(1931):20201273. PubMed ID: 32693722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insect cross-tolerance to freezing and drought stress: role of metabolic rearrangement.
    Hůla P; Moos M; Des Marteaux L; Šimek P; Koštál V
    Proc Biol Sci; 2022 Jun; 289(1976):20220308. PubMed ID: 35673862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing.
    Rozsypal J; Moos M; Šimek P; Koštál V
    J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29496781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery from supercooling, freezing, and cryopreservation stress in larvae of the drosophilid fly, Chymomyza costata.
    Štětina T; Hůla P; Moos M; Šimek P; Šmilauer P; Koštál V
    Sci Rep; 2018 Mar; 8(1):4414. PubMed ID: 29535362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect.
    Toxopeus J; Koštál V; Sinclair BJ
    Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata.
    Poupardin R; Schöttner K; Korbelová J; Provazník J; Doležel D; Pavlinic D; Beneš V; Koštál V
    BMC Genomics; 2015 Sep; 16():720. PubMed ID: 26391666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect fat body cell morphology and response to cold stress is modulated by acclimation.
    Des Marteaux LE; Štětina T; Koštál V
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30190314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.
    Koštál V; Korbelová J; Poupardin R; Moos M; Šimek P
    J Exp Biol; 2016 Aug; 219(Pt 15):2358-67. PubMed ID: 27489218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional analysis of insect extreme freeze tolerance.
    Des Marteaux LE; Hůla P; Koštál V
    Proc Biol Sci; 2019 Oct; 286(1913):20192019. PubMed ID: 31640516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline.
    Li Y; Zhang L; Chen H; Koštál V; Simek P; Moos M; Denlinger DL
    Insect Biochem Mol Biol; 2015 Aug; 63():34-46. PubMed ID: 26005120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella).
    Rozsypal J; Koštál V; Zahradníčková H; Šimek P
    PLoS One; 2013; 8(4):e61745. PubMed ID: 23613923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular freezing induces a permeability transition in the inner membrane of muscle mitochondria of freeze-sensitive but not freeze-tolerant
    Štětina T; Koštál V
    Front Physiol; 2024; 15():1358190. PubMed ID: 38384799
    [No Abstract]   [Full Text] [Related]  

  • 18. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance.
    Jagdale GB; Grewal PS
    Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling.
    Koštál V; Štětina T; Poupardin R; Korbelová J; Bruce AW
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8532-8537. PubMed ID: 28720705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae).
    Kostál V; Berková P; Simek P
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jul; 135(3):407-19. PubMed ID: 12831761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.