These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35208332)

  • 1. Three Frequency Up-Converting Piezoelectric Energy Harvesters Caused by Internal Resonance Mechanism: A Narrative Review.
    Liu J; Lu Y; Wang Z; Li S; Wu Y
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.
    Crossley S; Kar-Narayan S
    Nanotechnology; 2015 Aug; 26(34):344001. PubMed ID: 26234477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static and Dynamic Analysis of a Bistable Frequency Up-Converter Piezoelectric Energy Harvester.
    Atmeh M; Ibrahim A; Ramini A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Influencing Parameters Enhancing the Plucking Efficiency of Piezoelectric Energy Harvesters.
    Zelenika S; Gljušćić P; Barukčić A; Perčić M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandwidth Broadening of Piezoelectric Energy Harvesters Using Arrays of a Proposed Piezoelectric Cantilever Structure.
    Salem MS; Ahmed S; Shaker A; Alshammari MT; Al-Dhlan KA; Alanazi A; Saeed A; Abouelatta M
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimentally Verified Analytical Models of Piezoelectric Cantilevers in Different Design Configurations.
    Machu Z; Rubes O; Sevecek O; Hadas Z
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning.
    Song HC; Kim SW; Kim HS; Lee DG; Kang CY; Nahm S
    Adv Mater; 2020 Dec; 32(51):e2002208. PubMed ID: 33006178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration Energy Harvesting by Means of Piezoelectric Patches: Application to Aircrafts.
    Tommasino D; Moro F; Bernay B; De Lumley Woodyear T; de Pablo Corona E; Doria A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks.
    Gljušćić P; Zelenika S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Level Vibration for Single-Frequency and Multi-Frequency Excitation in Macro-Composite Piezoelectric (MFC) Energy Harvesters, Nonlinearity, and Higher Harmonics.
    Khazaee M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable Ball-Impact Piezoelectric Multi-Converters for Low-Frequency Energy Harvesting from Human Motion.
    Nastro A; Pienazza N; Baù M; Aceti P; Rouvala M; Ardito R; Ferrari M; Corigliano A; Ferrari V
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of vibration energy harvesting in rail transportation field.
    Qi L; Pan H; Pan Y; Luo D; Yan J; Zhang Z
    iScience; 2022 Mar; 25(3):103849. PubMed ID: 35198908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezoelectric energy harvesting systems using mechanical tuning techniques.
    Liu X; He L; Liu R; Hu D; Zhang L; Cheng G
    Rev Sci Instrum; 2023 Mar; 94(3):031501. PubMed ID: 37012740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.