These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35208351)

  • 1. Defects Produced during Wet Transfer Affect the Electrical Properties of Graphene.
    Zhang D; Zhang Q; Liang X; Pang X; Zhao Y
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Properties of CVD-Grown Graphene Transferred by Wet and Dry Transfer Processes.
    Yoon MA; Kim C; Kim JH; Lee HJ; Kim KS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer.
    Park H; Lim C; Lee CJ; Kang J; Kim J; Choi M; Park H
    Nanotechnology; 2018 Oct; 29(41):415303. PubMed ID: 30028310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Structure of Nitrogen- and Phosphorus-Doped Graphenes Grown by Chemical Vapor Deposition Method.
    Bulusheva LG; Arkhipov VE; Popov KM; Sysoev VI; Makarova AA; Okotrub AV
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride.
    Knapp M; Hoffmann R; Cimalla V; Ambacher O
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28820462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green Removal of DUV-Polarity-Modified PMMA for Wet Transfer of CVD Graphene.
    Jorudas J; Pashnev D; Kašalynas I; Ignatjev I; Niaura G; Selskis A; Astachov V; Alexeeva N
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
    Suk JW; Kitt A; Magnuson CW; Hao Y; Ahmed S; An J; Swan AK; Goldberg BB; Ruoff RS
    ACS Nano; 2011 Sep; 5(9):6916-24. PubMed ID: 21894965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clean graphene interfaces by selective dry transfer for large area silicon integration.
    Na SR; Rahimi S; Tao L; Chou H; Ameri SK; Akinwande D; Liechti KM
    Nanoscale; 2016 Apr; 8(14):7523-33. PubMed ID: 26902897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crack-release transfer method of wafer-scale grown graphene onto large-area substrates.
    Lee J; Kim Y; Shin HJ; Lee C; Lee D; Lee S; Moon CY; Lee SC; Kim SJ; Ji JH; Yoon HS; Jun SC
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12588-93. PubMed ID: 24967530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoring the Electrical Properties of CVD Graphene via Physisorption of Molecular Adsorbates.
    Thodkar K; Thompson D; Lüönd F; Moser L; Overney F; Marot L; Schönenberger C; Jeanneret B; Calame M
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):25014-25022. PubMed ID: 28675296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production.
    Liao CD; Capasso A; Queirós T; Domingues T; Cerqueira F; Nicoara N; Borme J; Freitas P; Alpuim P
    Beilstein J Nanotechnol; 2022; 13():796-806. PubMed ID: 36105686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer.
    Jang M; Trung TQ; Jung JH; Kim BY; Lee NE
    Phys Chem Chem Phys; 2014 Mar; 16(9):4098-105. PubMed ID: 24448397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns.
    Wang B; Huang M; Tao L; Lee SH; Jang AR; Li BW; Shin HS; Akinwande D; Ruoff RS
    ACS Nano; 2016 Jan; 10(1):1404-10. PubMed ID: 26701198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Robustness of Graphene on Flexible Transparent Substrates.
    Kang MH; Prieto López LO; Chen B; Teo K; Williams JA; Milne WI; Cole MT
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22506-15. PubMed ID: 27482734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical-free transfer of patterned reduced graphene oxide thin films for large area flexible electronics and nanoelectromechanical systems.
    Patil N; Gupta A; Jaiswal M; Dutta S
    Nanotechnology; 2020 Dec; 31(49):495301. PubMed ID: 32975218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Test of NH
    Liang T; Liu R; Lei C; Wang K; Li Z; Li Y
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33126585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Modified Wet Transfer Method for Eliminating Interfacial Impurities in Graphene.
    Jang DJ; Haidari MM; Kim JH; Ko JY; Yi Y; Choi JS
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy.
    Li R; Li Z; Pambou E; Gutfreund P; Waigh TA; Webster JRP; Lu JR
    Langmuir; 2018 Feb; 34(5):1827-1833. PubMed ID: 29303580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.