These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35208366)
21. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. Hwang SW; Park G; Edwards C; Corbin EA; Kang SK; Cheng H; Song JK; Kim JH; Yu S; Ng J; Lee JE; Kim J; Yee C; Bhaduri B; Su Y; Omennetto FG; Huang Y; Bashir R; Goddard L; Popescu G; Lee KM; Rogers JA ACS Nano; 2014 Jun; 8(6):5843-51. PubMed ID: 24684516 [TBL] [Abstract][Full Text] [Related]
22. Flexible Cyclic-Poly(phthalaldehyde)/Poly(ε-caprolactone) Blend Fibers with Fast Daylight-Triggered Transience. Li S; Rizvi MH; Lynch BB; Tracy JB; Ford E Macromol Rapid Commun; 2021 Apr; 42(7):e2000657. PubMed ID: 33368746 [TBL] [Abstract][Full Text] [Related]
23. PDMS-PDMS Micro Channels Filled with Phase-Change Material for Chip Cooling. Liu Z; Qin S; Chen X; Chen D; Wang F Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424098 [TBL] [Abstract][Full Text] [Related]
24. A physically transient form of silicon electronics. Hwang SW; Tao H; Kim DH; Cheng H; Song JK; Rill E; Brenckle MA; Panilaitis B; Won SM; Kim YS; Song YM; Yu KJ; Ameen A; Li R; Su Y; Yang M; Kaplan DL; Zakin MR; Slepian MJ; Huang Y; Omenetto FG; Rogers JA Science; 2012 Sep; 337(6102):1640-4. PubMed ID: 23019646 [TBL] [Abstract][Full Text] [Related]
25. Great Potential of Si-Te Ovonic Threshold Selector in Electrical Performance and Scalability. Wu R; Sun Y; Zhang S; Zhao Z; Song Z Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986008 [TBL] [Abstract][Full Text] [Related]
26. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics. Hertel S; Waldmann D; Jobst J; Albert A; Albrecht M; Reshanov S; Schöner A; Krieger M; Weber HB Nat Commun; 2012 Jul; 3():957. PubMed ID: 22805564 [TBL] [Abstract][Full Text] [Related]
27. Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics. Shin JW; Chan Choe J; Lee JH; Han WB; Jang TM; Ko GJ; Yang SM; Kim YG; Joo J; Lim BH; Park E; Hwang SW ACS Nano; 2021 Dec; 15(12):19310-19320. PubMed ID: 34843199 [TBL] [Abstract][Full Text] [Related]
28. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Tao H; Hwang SW; Marelli B; An B; Moreau JE; Yang M; Brenckle MA; Kim S; Kaplan DL; Rogers JA; Omenetto FG Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17385-9. PubMed ID: 25422476 [TBL] [Abstract][Full Text] [Related]
29. Hypoxia abolishes transience of the heat-shock response in the methylotrophic yeast Hansenula polymorpha. Guerra E; Chye PP; Berardi E; Piper PW Microbiology (Reading); 2005 Mar; 151(Pt 3):805-811. PubMed ID: 15758226 [TBL] [Abstract][Full Text] [Related]
30. Soft elastomeric composite materials with skin-inspired mechanical properties for stretchable electronic circuits. Zhang K; Kong S; Li Y; Lu M; Kong D Lab Chip; 2019 Aug; 19(16):2709-2717. PubMed ID: 31334739 [TBL] [Abstract][Full Text] [Related]
31. Phototriggerable Transient Electronics via Fullerene-Mediated Degradation of Polymer:Fullerene Encapsulation Layer. Zhong S; Wong HC; Low HY; Zhao R ACS Appl Mater Interfaces; 2021 Jan; 13(1):904-911. PubMed ID: 33356097 [TBL] [Abstract][Full Text] [Related]
32. Molecular and nanoscale materials and devices in electronics. Fu L; Cao L; Liu Y; Zhu D Adv Colloid Interface Sci; 2004 Dec; 111(3):133-57. PubMed ID: 15589806 [TBL] [Abstract][Full Text] [Related]
33. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp. Luo H; Wang C; Linghu C; Yu K; Wang C; Song J Natl Sci Rev; 2020 Feb; 7(2):296-304. PubMed ID: 34692045 [TBL] [Abstract][Full Text] [Related]
34. UV-Triggered Transient Electrospun Poly(propylene carbonate)/Poly(phthalaldehyde) Polymer Blend Fiber Mats. Shi C; Leonardi A; Zhang Y; Ohlendorf P; Ruyack A; Lal A; Ober CK ACS Appl Mater Interfaces; 2018 Aug; 10(34):28928-28935. PubMed ID: 30044081 [TBL] [Abstract][Full Text] [Related]
37. Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics. Jamshidi R; Chen Y; Montazami R Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32224921 [TBL] [Abstract][Full Text] [Related]
38. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Wang S; Xu J; Wang W; Wang GN; Rastak R; Molina-Lopez F; Chung JW; Niu S; Feig VR; Lopez J; Lei T; Kwon SK; Kim Y; Foudeh AM; Ehrlich A; Gasperini A; Yun Y; Murmann B; Tok JB; Bao Z Nature; 2018 Mar; 555(7694):83-88. PubMed ID: 29466334 [TBL] [Abstract][Full Text] [Related]
39. Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics. Wang L; Gao Y; Dai F; Kong D; Wang H; Sun P; Shi Z; Sheng X; Xu B; Yin L ACS Appl Mater Interfaces; 2019 May; 11(19):18013-18023. PubMed ID: 31010291 [TBL] [Abstract][Full Text] [Related]
40. Single-chip microprocessor that communicates directly using light. Sun C; Wade MT; Lee Y; Orcutt JS; Alloatti L; Georgas MS; Waterman AS; Shainline JM; Avizienis RR; Lin S; Moss BR; Kumar R; Pavanello F; Atabaki AH; Cook HM; Ou AJ; Leu JC; Chen YH; Asanović K; Ram RJ; Popović MA; Stojanović VM Nature; 2015 Dec; 528(7583):534-8. PubMed ID: 26701054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]