These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35208373)

  • 21. "Connecting worlds - a view on microfluidics for a wider application".
    Fernandes AC; Gernaey KV; Krühne U
    Biotechnol Adv; 2018; 36(4):1341-1366. PubMed ID: 29733891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A portable and reconfigurable multi-organ platform for drug development with onboard microfluidic flow control.
    Coppeta JR; Mescher MJ; Isenberg BC; Spencer AJ; Kim ES; Lever AR; Mulhern TJ; Prantil-Baun R; Comolli JC; Borenstein JT
    Lab Chip; 2016 Dec; 17(1):134-144. PubMed ID: 27901159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips.
    Zhang Q; Zhang M; Djeghlaf L; Bataille J; Gamby J; Haghiri-Gosnet AM; Pallandre A
    Electrophoresis; 2017 Apr; 38(7):953-976. PubMed ID: 28059451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.
    Wang G; Teng D; Lai YT; Lu YW; Ho Y; Lee CY
    IET Nanobiotechnol; 2014 Sep; 8(3):163-71. PubMed ID: 25082225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator.
    Dang VB; Kim SJ
    Electrophoresis; 2017 Apr; 38(7):977-982. PubMed ID: 27987226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007-2017).
    Alam MK; Koomson E; Zou H; Yi C; Li CW; Xu T; Yang M
    Anal Chim Acta; 2018 Dec; 1044():29-65. PubMed ID: 30442405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.
    Kim TH; Hahn YK; Lee J; van Noort D; Kim MS
    Anal Chem; 2018 Feb; 90(4):2534-2541. PubMed ID: 29365265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The MainSTREAM component platform: a holistic approach to microfluidic system design.
    Sabourin D; Skafte-Pedersen P; Søe MJ; Hemmingsen M; Alberti M; Coman V; Petersen J; Emnéus J; Kutter JP; Snakenborg D; Jørgensen F; Clausen C; Holmstrøm K; Dufva M
    J Lab Autom; 2013 Jun; 18(3):212-28. PubMed ID: 23015520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics.
    Chung SE; Jung Y; Kwon S
    Small; 2011 Mar; 7(6):796-803. PubMed ID: 21322106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enclosed pillar arrays integrated on a fluidic platform for on-chip separations and analysis.
    Lavrik NV; Taylor LC; Sepaniak MJ
    Lab Chip; 2010 Apr; 10(8):1086-94. PubMed ID: 20358118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suspended microfluidics.
    Casavant BP; Berthier E; Theberge AB; Berthier J; Montanez-Sauri SI; Bischel LL; Brakke K; Hedman CJ; Bushman W; Keller NP; Beebe DJ
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10111-6. PubMed ID: 23729815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modular operation of microfluidic chips for highly parallelized cell culture and liquid dosing via a fluidic circuit board.
    Vollertsen AR; de Boer D; Dekker S; Wesselink BAM; Haverkate R; Rho HS; Boom RJ; Skolimowski M; Blom M; Passier R; van den Berg A; van der Meer AD; Odijk M
    Microsyst Nanoeng; 2020; 6():107. PubMed ID: 34567716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modular Microfluidics: Current Status and Future Prospects.
    Lai X; Yang M; Wu H; Li D
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design-for-Trust Techniques for Digital Microfluidic Biochip Layout with Error Control Mechanism.
    Gountia D; Roy S
    IEEE/ACM Trans Comput Biol Bioinform; 2021 Jan; PP():. PubMed ID: 33497338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly.
    Abu-Dawas S; Alawami H; Zourob M; Ramadan Q
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Droplet Size-Aware High-Level Synthesis for Micro-Electrode-Dot-Array Digital Microfluidic Biochips.
    Li Z; Lai KY; Yu PH; Chakrabarty K; Ho TY; Lee CY
    IEEE Trans Biomed Circuits Syst; 2017 Jun; 11(3):612-626. PubMed ID: 28333641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and Fabrication of a Fully-Integrated, Miniaturised Fluidic System for the Analysis of Enzyme Kinetics.
    Tsiamis A; Buchoux A; Mahon ST; Walton AJ; Smith S; Clarke DJ; Stokes AA
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.