These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35208386)

  • 1. Numerical Analysis of Multi-Angle Precision Microcutting of a Single-Crystal Copper Surface Based on Molecular Dynamics.
    Liu J; Dong L; Li J; Dong K; Wang T; Zhao Z
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Particle Velocity on Microcutting Process of Fe-C Alloy by Molecular Dynamics.
    Deng C; Li J; Meng W; Zhao W
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.
    Li J; Meng W; Dong K; Zhang X; Zhao W
    Nanoscale Res Lett; 2018 Jan; 13(1):11. PubMed ID: 29327287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulation Study on the Influence of the Abrasive Flow Process on the Cutting of Iron-Carbon Alloys (α-Fe).
    Li J; Zhao Z; Li J; Xiao F; Qiu R; Xie H; Meng W
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-cutting mechanism of ion implantation-modified SiC: reducing subsurface damage expansion and abrasive wear.
    Kang Q; Kong X; Chang J; Fang X; Kang C; Wu C; Li C; Maeda R; Jiang Z
    Nanotechnology; 2024 Jun; 35(34):. PubMed ID: 38579690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and Modeling of the Micro-Cutting Process of Ti-6Al-4V Titanium Alloy with Single Abrasive Grain.
    Rypina Ł; Lipiński D; Bałasz B; Kacalak W; Szatkiewicz T
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33371402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple Effects of the Physicochemical Interaction between Water and Copper and Their Influence on Microcutting.
    Zhang C; Lee YJ; Zhang YF; Wang H
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38978339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on Chip Formation Mechanism of Single Crystal Copper Using Molecular Dynamics Simulations.
    Zhang P; Li X; Zhang J; Zhang Y; Huang X; Ye G
    Nanoscale Res Lett; 2022 Sep; 17(1):91. PubMed ID: 36121532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Fluid Media on Material Removal and Subsurface Defects Evolution of Monocrystal Copper in Nano-Cutting Process.
    Wang Q; Zhang C; Wu M; Chen J
    Nanoscale Res Lett; 2019 Jul; 14(1):239. PubMed ID: 31317274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale friction behavior and deformation during copper chemical mechanical polishing process.
    Ngo TB; Nguyen VT; Fang TH
    J Mol Model; 2023 Aug; 29(9):293. PubMed ID: 37620735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Machining-Induced Subsurface Defects on Dislocation Evolution and Mechanical Properties of Materials via Nano-indentation.
    Wang Q; Wu M; Zhang C; Lv Y; Ji X
    Nanoscale Res Lett; 2019 Dec; 14(1):372. PubMed ID: 31820134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutting-based single atomic layer removal mechanism of monocrystalline copper: edge radius effect.
    Xie W; Fang F
    Nanoscale Res Lett; 2019 Dec; 14(1):370. PubMed ID: 31811570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutting Performance of Randomly Distributed Active Abrasive Grains in Gear Honing Process.
    Gao Y; Wang F; Liang Y; Han J; Su J; Tong Y; Liu L
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulation on Cutting Mechanism in the Hybrid Machining Process of Single-Crystal Silicon.
    Liu C; He W; Chu J; Zhang J; Chen X; Xiao J; Xu J
    Nanoscale Res Lett; 2021 Apr; 16(1):66. PubMed ID: 33881620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.
    Wang Q; Bai Q; Chen J; Su H; Wang Z; Xie W
    Nanoscale Res Lett; 2015 Dec; 10(1):396. PubMed ID: 26452371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Abrasive Grain Concession on Micromechanical Behavior of Lapping Sapphire by FAP.
    Xu H; Wang J; Xu Y; Li Q; Jiang B
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.
    Huang Y; Zong W
    Nanoscale Res Lett; 2014; 9(1):622. PubMed ID: 25426007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation.
    Zhang L; Huang H; Zhao H; Ma Z; Yang Y; Hu X
    Nanoscale Res Lett; 2013 May; 8(1):211. PubMed ID: 23641932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Local Temperature Changes on the Material Microstructure in Abrasive Water Jet Machining (AWJM).
    Spadło S; Bańkowski D; Młynarczyk P; Hlaváčová IM
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Abrasive Machining of Difficult-to-Cut Materials for Ultra-High-Speed Machining of AISI 304 Bars.
    Wang R; Lim P; Heng L; Mun SD
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28869557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.