These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 35208405)
1. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H. Xu W; Ao H; Zhou N; Song Z; Jiang H Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405 [TBL] [Abstract][Full Text] [Related]
2. Piezoelectric Performance of a Symmetrical Ring-Shaped Piezoelectric Energy Harvester Using PZT-5H under a Temperature Gradient. Zhou N; Li R; Ao H; Zhang C; Jiang H Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610622 [TBL] [Abstract][Full Text] [Related]
3. Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester. Xu Q; Gao A; Li Y; Jin Y Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630142 [TBL] [Abstract][Full Text] [Related]
4. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations. Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984 [TBL] [Abstract][Full Text] [Related]
5. Design, Manufacture and Test of Piezoelectric Cantilever-Beam Energy Harvesters with Hollow Structures. Wang B; Zhang C; Lai L; Dong X; Li Y Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577733 [TBL] [Abstract][Full Text] [Related]
6. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction. Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213 [TBL] [Abstract][Full Text] [Related]
7. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester. Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394 [TBL] [Abstract][Full Text] [Related]
8. Low-frequency, broadband piezoelectric vibration energy harvester with folded trapezoidal beam. Wang H; Li B; Liu Y; Zhao W Rev Sci Instrum; 2019 Mar; 90(3):035001. PubMed ID: 30927805 [TBL] [Abstract][Full Text] [Related]
9. A Multi-Mode Broadband Vibration Energy Harvester Composed of Symmetrically Distributed U-Shaped Cantilever Beams. Huang X; Zhang C; Dai K Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33669395 [TBL] [Abstract][Full Text] [Related]
10. Design and evaluation of a monostable symmetric piezoelectric energy harvester based on cantilever structure and magnetic excitation action. Wang L; Zhang Y; Wang T Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38727573 [TBL] [Abstract][Full Text] [Related]
11. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter. Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434 [TBL] [Abstract][Full Text] [Related]
12. A Linear-Arc Composite Beam Piezoelectric Energy Harvester Modeling and Finite Element Analysis. Zhang X; Guo Y; Zhu F; Chen X; Tian H; Xu H Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744462 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application. Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411 [TBL] [Abstract][Full Text] [Related]
14. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester. Li X; Ma T; Liu B; Wang C; Su Y Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938 [TBL] [Abstract][Full Text] [Related]
15. Modeling and Experimental Study of Vibration Energy Harvester with Triple-Frequency-Up Voltage Output by Vibration Mode Switching. Xu J; Liu Z; Dai W; Zhang R; Ge J Micromachines (Basel); 2024 Aug; 15(8):. PubMed ID: 39203664 [TBL] [Abstract][Full Text] [Related]
16. Theoretical and Experimental Studies on MEMS Variable Cross-Section Cantilever Beam Based Piezoelectric Vibration Energy Harvester. He X; Li D; Zhou H; Hui X; Mu X Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34208991 [TBL] [Abstract][Full Text] [Related]
17. A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting. Peddigari M; Kim GY; Park CH; Min Y; Kim JW; Ahn CW; Choi JJ; Hahn BD; Choi JH; Park DS; Hong JK; Yeom JT; Park KI; Jeong DY; Yoon WH; Ryu J; Hwang GT Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31085985 [TBL] [Abstract][Full Text] [Related]
18. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester. Ma T; Sun K; Jia S; Du F; Zhang Z Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072 [TBL] [Abstract][Full Text] [Related]
19. A compound cantilever beam piezoelectric harvester based on wind energy excitation. Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068 [TBL] [Abstract][Full Text] [Related]
20. Electro-Mechanical Characterization and Modeling of a Broadband Piezoelectric Microgenerator Based on Lithium Niobate. Panayanthatta N; Clementi G; Ouhabaz M; Margueron S; Bartasyte A; Lallart M; Basrour S; La Rosa R; Bano E; Montes L Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]