These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35208653)
1. Biocontrol of Non- Agarbati A; Canonico L; Pecci T; Romanazzi G; Ciani M; Comitini F Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208653 [TBL] [Abstract][Full Text] [Related]
2. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Wang X; Glawe DA; Kramer E; Weller D; Okubara PA Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476 [TBL] [Abstract][Full Text] [Related]
3. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Parafati L; Vitale A; Restuccia C; Cirvilleri G Food Microbiol; 2015 May; 47():85-92. PubMed ID: 25583341 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of preharvest application of biocontrol agents against gray mold in grapevine. Altieri V; Rossi V; Fedele G Front Plant Sci; 2023; 14():1154370. PubMed ID: 36993848 [TBL] [Abstract][Full Text] [Related]
6. Biocontrol Ability and Action Mechanism of Starmerella bacillaris (Synonym Candida zemplinina) Isolated from Wine Musts against Gray Mold Disease Agent Botrytis cinerea on Grape and Their Effects on Alcoholic Fermentation. Lemos WJ; Bovo B; Nadai C; Crosato G; Carlot M; Favaron F; Giacomini A; Corich V Front Microbiol; 2016; 7():1249. PubMed ID: 27574517 [TBL] [Abstract][Full Text] [Related]
7. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Oro L; Feliziani E; Ciani M; Romanazzi G; Comitini F Int J Food Microbiol; 2018 Jan; 265():18-22. PubMed ID: 29107842 [TBL] [Abstract][Full Text] [Related]
9. Indigenous Yeasts for the Biocontrol of Sepúlveda X; Vargas M; Vero S; Zapata N J Fungi (Basel); 2023 May; 9(5):. PubMed ID: 37233268 [TBL] [Abstract][Full Text] [Related]
10. Biocontrol potential of wine yeasts against four grape phytopathogenic fungi disclosed by time-course monitoring of inhibitory activities. Esteves M; Lage P; Sousa J; Centeno F; de Fátima Teixeira M; Tenreiro R; Mendes-Ferreira A Front Microbiol; 2023; 14():1146065. PubMed ID: 36960294 [TBL] [Abstract][Full Text] [Related]
11. Biocontrol strategies against Botrytis cinerea in viticulture: evaluating the efficacy and mode of action of selected winemaking yeast strains. Tsioka A; Psilioti Dourmousi K; Poulaki EG; Papoutsis G; Tjamos SE; Gkizi D Lett Appl Microbiol; 2024 Mar; 77(3):. PubMed ID: 38449374 [TBL] [Abstract][Full Text] [Related]
13. On the Way to the Technological Development of Newly Selected Non- Salerno A; D'Amico M; Bergamini C; Maggiolini FAM; Vendemia M; Prencipe A; Catacchio CR; Ventura M; Cardone MF; Marsico AD Microorganisms; 2024 Feb; 12(2):. PubMed ID: 38399744 [TBL] [Abstract][Full Text] [Related]
14. Biocontrol of Alternaria alternata in cold-stored table grapes using psychrotrophic yeasts and bioactive compounds of natural sources. Torres-Palazzolo C; Ferreyra S; Iribas F; Chimeno V; Rojo MC; Casalongue C; Fontana A; Combina M; Ponsone ML Int J Food Microbiol; 2024 Apr; 415():110640. PubMed ID: 38442539 [TBL] [Abstract][Full Text] [Related]
15. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Parafati L; Vitale A; Restuccia C; Cirvilleri G Food Microbiol; 2017 May; 63():191-198. PubMed ID: 28040168 [TBL] [Abstract][Full Text] [Related]
16. Biocontrol of Fedele G; Brischetto C; Rossi V Front Plant Sci; 2020; 11():1232. PubMed ID: 32922419 [TBL] [