These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 35208673)

  • 1. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy.
    Klein VJ; Irla M; Gil López M; Brautaset T; Fernandes Brito L
    Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a formaldehyde biosensor with application to synthetic methylotrophy.
    Woolston BM; Roth T; Kohale I; Liu DR; Stephanopoulos G
    Biotechnol Bioeng; 2018 Jan; 115(1):206-215. PubMed ID: 28921510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation.
    Rohlhill J; Gerald Har JR; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2020 Jan; 57():247-255. PubMed ID: 31881281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in
    Bazurto JV; Bruger EL; Lee JA; Lambert LB; Marx CJ
    J Bacteriol; 2021 May; 203(9):. PubMed ID: 33619153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylotrophy in Mycobacteria: Dissection of the Methanol Metabolism Pathway in Mycobacterium smegmatis.
    Dubey AA; Wani SR; Jain V
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29891642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs.
    Gregory GJ; Bennett RK; Papoutsakis ET
    Metab Eng; 2022 May; 71():99-116. PubMed ID: 34547453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanol Dehydrogenases as a Key Biocatalysts for Synthetic Methylotrophy.
    Le TK; Lee YJ; Han GH; Yeom SJ
    Front Bioeng Biotechnol; 2021; 9():787791. PubMed ID: 35004648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Trends in Methylotrophy.
    Chistoserdova L; Kalyuzhnaya MG
    Trends Microbiol; 2018 Aug; 26(8):703-714. PubMed ID: 29471983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modularity of methylotrophy, revisited.
    Chistoserdova L
    Environ Microbiol; 2011 Oct; 13(10):2603-22. PubMed ID: 21443740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconversion of Methanol by Synthetic Methylotrophy.
    Guo F; Zhang S; Jiang Y; Xu H; Xin F; Zhang W; Jiang M
    Adv Biochem Eng Biotechnol; 2022; 180():149-168. PubMed ID: 34545421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory interventions improve the biosynthesis of limiting amino acids from methanol carbon to improve synthetic methylotrophy in Escherichia coli.
    Kyle Bennett R; Agee A; Har JRG; von Hagel B; Antoniewicz MR; Papoutsakis ET
    Biotechnol Bioeng; 2021 Jan; 118(1):43-57. PubMed ID: 32876943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylamine utilization via the N-methylglutamate pathway in Methylobacterium extorquens PA1 involves a novel flow of carbon through C1 assimilation and dissimilation pathways.
    Nayak DD; Marx CJ
    J Bacteriol; 2014 Dec; 196(23):4130-9. PubMed ID: 25225269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Escherichia coli for methanol conversion.
    Müller JEN; Meyer F; Litsanov B; Kiefer P; Potthoff E; Heux S; Quax WJ; Wendisch VF; Brautaset T; Portais JC; Vorholt JA
    Metab Eng; 2015 Mar; 28():190-201. PubMed ID: 25596507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1.
    Martinez-Gomez NC; Good NM; Lidstrom ME
    J Bacteriol; 2015 Jun; 197(12):2020-6. PubMed ID: 25845846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism.
    Yurimoto H; Kato N; Sakai Y
    Chem Rec; 2005; 5(6):367-75. PubMed ID: 16278835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production.
    Wegat V; Fabarius JT; Sieber V
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):113. PubMed ID: 36273178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of E. coli.
    He H; Edlich-Muth C; Lindner SN; Bar-Even A
    ACS Synth Biol; 2018 Jun; 7(6):1601-1611. PubMed ID: 29756766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Methanol Tolerance of an
    Bennett RK; Gregory GJ; Gonzalez JE; Har JRG; Antoniewicz MR; Papoutsakis ET
    Front Microbiol; 2021; 12():638426. PubMed ID: 33643274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lanthanide-Dependent Methylotrophs of the Family
    Wegner CE; Gorniak L; Riedel S; Westermann M; Küsel K
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31604774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism.
    Marx CJ; Van Dien SJ; Lidstrom ME
    PLoS Biol; 2005 Feb; 3(2):e16. PubMed ID: 15660163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.