These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35208809)

  • 1. Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures.
    Logroño W; Nikolausz M; Harms H; Kleinsteuber S
    Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Resource Management for Ex Situ Biomethanation of Hydrogen at Alkaline pH.
    Logroño W; Popp D; Kleinsteuber S; Sträuber H; Harms H; Nikolausz M
    Microorganisms; 2020 Apr; 8(4):. PubMed ID: 32344539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interspecies Formate Exchange Drives Syntrophic Growth of
    Day LA; Kelsey EL; Fonseca DR; Costa KC
    Appl Environ Microbiol; 2022 Dec; 88(23):e0115922. PubMed ID: 36374033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules.
    Xu H; Gong S; Sun Y; Ma H; Zheng M; Wang K
    Environ Technol; 2015; 36(1-4):529-37. PubMed ID: 25347307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of anaerobes to methyl fluoride, 2-bromoethanesulfonate and hydrogen during acetate degradation.
    Hao L; Lü F; Li L; Shao L; He P
    J Environ Sci (China); 2013 May; 25(5):857-64. PubMed ID: 24218814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling prevalence of homoacetogenesis and methanogenesis pathways due to inhibitors addition.
    Serna-García R; Tsapekos P; Treu L; Bouzas A; Seco A; Campanaro S; Angelidaki I
    Bioresour Technol; 2023 May; 376():128922. PubMed ID: 36940878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous addition of H
    Mulat DG; Mosbæk F; Ward AJ; Polag D; Greule M; Keppler F; Nielsen JL; Feilberg A
    Waste Manag; 2017 Oct; 68():146-156. PubMed ID: 28623019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomethanation processes: new insights on the effect of a high H
    Braga Nan L; Trably E; Santa-Catalina G; Bernet N; Delgenès JP; Escudié R
    Biotechnol Biofuels; 2020; 13():141. PubMed ID: 32793302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of H
    Wahid R; Mulat DG; Gaby JC; Horn SJ
    Biotechnol Biofuels; 2019; 12():104. PubMed ID: 31164923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Low Can You Go: Methane Production of
    Chen X; Ottosen LDM; Kofoed MVW
    Front Bioeng Biotechnol; 2019; 7():34. PubMed ID: 30899758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of CO on hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions: Microbial community and biomethanation pathways.
    Bu F; Dong N; Kumar Khanal S; Xie L; Zhou Q
    Bioresour Technol; 2018 Oct; 266():364-373. PubMed ID: 29982059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenotrophic methanogenic granular sludge formation for highly efficient transforming hydrogen to CH
    Li K; Gong H; Liu Y; Ma J; Shi C; Wang K
    J Environ Manage; 2022 Feb; 303():113999. PubMed ID: 34863591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the methanogenesis pathways by hydrogen at transcriptomic level in time.
    Szuhaj M; Kakuk B; Wirth R; Rákhely G; Kovács KL; Bagi Z
    Appl Microbiol Biotechnol; 2023 Oct; 107(20):6315-6324. PubMed ID: 37610465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis.
    Costa KC; Yoon SH; Pan M; Burn JA; Baliga NS; Leigh JA
    J Bacteriol; 2013 Apr; 195(7):1456-62. PubMed ID: 23335420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physiological effect of heavy metals and volatile fatty acids on
    Abdel Azim A; Rittmann SKR; Fino D; Bochmann G
    Biotechnol Biofuels; 2018; 11():301. PubMed ID: 30410576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate.
    Park SG; Rhee C; Shin SG; Shin J; Mohamed HO; Choi YJ; Chae KJ
    Environ Int; 2019 Oct; 131():105006. PubMed ID: 31330362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Communities in Flexible Biomethanation of Hydrogen Are Functionally Resilient Upon Starvation.
    Logroño W; Popp D; Nikolausz M; Kluge P; Harms H; Kleinsteuber S
    Front Microbiol; 2021; 12():619632. PubMed ID: 33643248
    [No Abstract]   [Full Text] [Related]  

  • 18. Competition Between Chemolithotrophic Acetogenesis and Hydrogenotrophic Methanogenesis for Exogenous H
    Fu B; Jin X; Conrad R; Liu H; Liu H
    Front Microbiol; 2019; 10():2418. PubMed ID: 31749772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion.
    Yang Y; Guo J; Hu Z
    Water Res; 2013 Nov; 47(17):6790-800. PubMed ID: 24112628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random mutagenesis identifies factors involved in formate-dependent growth of the methanogenic archaeon Methanococcus maripaludis.
    Sattler C; Wolf S; Fersch J; Goetz S; Rother M
    Mol Genet Genomics; 2013 Sep; 288(9):413-24. PubMed ID: 23801407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.