BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 35208907)

  • 1. Actinomycetes from Caves: An Overview of Their Diversity, Biotechnological Properties, and Insights for Their Use in Soil Environments.
    Farda B; Djebaili R; Vaccarelli I; Del Gallo M; Pellegrini M
    Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique actinomycetes from marine caves and coral reef sediments provide novel PKS and NRPS biosynthetic gene clusters.
    Hodges TW; Slattery M; Olson JB
    Mar Biotechnol (NY); 2012 Jun; 14(3):270-80. PubMed ID: 22002467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria and Metabolic Potential in Karst Caves Revealed by Intensive Bacterial Cultivation and Genome Assembly.
    Zhu HZ; Zhang ZF; Zhou N; Jiang CY; Wang BJ; Cai L; Wang HM; Liu SJ
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation, antibacterial screening, and identification of bioactive cave dwelling bacteria in Fiji.
    Pipite A; Lockhart PJ; McLenachan PA; Christi K; Kumar D; Prasad S; Subramani R
    Front Microbiol; 2022; 13():1012867. PubMed ID: 36605510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves.
    Zada S; Xie J; Yang M; Yang X; Sajjad W; Rafiq M; Hasan F; Hu Z; Wang H
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8921-8936. PubMed ID: 34738169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil.
    Reboleira AS; Bodawatta KH; Ravn NMR; Lauritzen SE; Skoglund RØ; Poulsen M; Michelsen A; Jønsson KA
    Environ Microbiome; 2022 Aug; 17(1):41. PubMed ID: 35941623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA.
    Lavoie KH; Winter AS; Read KJ; Hughes EM; Spilde MN; Northup DE
    PLoS One; 2017; 12(2):e0169339. PubMed ID: 28199330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves.
    Riquelme C; Enes Dapkevicius ML; Miller AZ; Charlop-Powers Z; Brady S; Mason C; Cheeptham N
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):843-857. PubMed ID: 27812802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actinobacterial community in Shuanghe Cave using culture-dependent and -independent approaches.
    Long Y; Jiang J; Hu X; Zhou J; Hu J; Zhou S
    World J Microbiol Biotechnol; 2019 Oct; 35(10):153. PubMed ID: 31576426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle.
    De Mandal S; Chatterjee R; Kumar NS
    BMC Microbiol; 2017 Apr; 17(1):90. PubMed ID: 28399822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of antimicrobial activities and fatty acid composition of actinobacteria isolated from water surface of underground lakes from Badzheyskaya and Okhotnichya caves in Siberia.
    Voytsekhovskaya IV; Axenov-Gribanov DV; Murzina SA; Pekkoeva SN; Protasov ES; Gamaiunov SV; Timofeyev MA
    PeerJ; 2018; 6():e5832. PubMed ID: 30386707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy.
    Świecimska M; Golińska P; Goodfellow M
    Front Microbiol; 2022; 13():1054384. PubMed ID: 36741889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification.
    Omoregie AI; Ong DEL; Nissom PM
    Lett Appl Microbiol; 2019 Feb; 68(2):173-181. PubMed ID: 30537001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cave Microbes as a Potential Source of Drugs Development in the Modern Era.
    Zada S; Sajjad W; Rafiq M; Ali S; Hu Z; Wang H; Cai R
    Microb Ecol; 2022 Oct; 84(3):676-687. PubMed ID: 34693460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut microbiome reflect adaptation of earthworms to cave and surface environments.
    Gong X; Chen TW; Zhang L; Pižl V; Tajovský K; Devetter M
    Anim Microbiome; 2022 Aug; 4(1):47. PubMed ID: 35932082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ancient and remote quartzite caves as a novel source of culturable microbes with biotechnological potential.
    Ghezzi D; Salvi L; Costantini PE; Firrincieli A; Iorio M; Lopo E; Sosio M; Elbanna AH; Khalil ZG; Capon RJ; De Waele J; Vergara F; Sauro F; Cappelletti M
    Microbiol Res; 2024 Jun; 286():127793. PubMed ID: 38901277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The geomicrobiology of limestone, sulfuric acid speleogenetic, and volcanic caves: basic concepts and future perspectives.
    Turrini P; Chebbi A; Riggio FP; Visca P
    Front Microbiol; 2024; 15():1370520. PubMed ID: 38572233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. USC
    Cheng XY; Liu XY; Wang HM; Su CT; Zhao R; Bodelier PLE; Wang WQ; Ma LY; Lu XL
    Microbiol Spectr; 2021 Sep; 9(1):e0082021. PubMed ID: 34406837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Into the Unknown: Microbial Communities in Caves, Their Role, and Potential Use.
    Kosznik-Kwaśnicka K; Golec P; Jaroszewicz W; Lubomska D; Piechowicz L
    Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outdoor climate drives diversity patterns of dominant microbial taxa in caves worldwide.
    Biagioli F; Coleine C; Delgado-Baquerizo M; Feng Y; Saiz-Jimenez C; Selbmann L
    Sci Total Environ; 2024 Jan; 906():167674. PubMed ID: 37813267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.