These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 35209061)

  • 21. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass.
    Son EB; Poo KM; Chang JS; Chae KJ
    Sci Total Environ; 2018 Feb; 615():161-168. PubMed ID: 28964991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass.
    Abdullah Al-Dhabi N; Arasu MV
    Environ Res; 2022 Mar; 204(Pt B):112115. PubMed ID: 34563525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro- and microphytes.
    Das S; Das S; Ghangrekar MM
    J Basic Microbiol; 2022 Mar; 62(3-4):260-278. PubMed ID: 35014053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of seaweed biomass as a biosorbent for metal ions .
    Lau TC; Ang PO; Wong PK
    Water Sci Technol; 2003; 47(10):49-54. PubMed ID: 12862216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A systematic study for removal of heavy metals from aqueous media using Sorghum bicolor: an efficient biosorbent.
    Naseem K; Farooqi ZH; Ur Rehman MZ; Ur Rehman MA; Begum R; Huma R; Shahbaz A; Najeeb J; Irfan A
    Water Sci Technol; 2018 Jun; 77(9-10):2355-2368. PubMed ID: 29893724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.
    Lee CG; Song MK; Ryu JC; Park C; Choi JW; Lee SH
    Chemosphere; 2016 Jun; 153():1-9. PubMed ID: 26999028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach.
    Mandal RR; Bashir Z; Mandal JR; Raj D
    Environ Monit Assess; 2024 May; 196(6):502. PubMed ID: 38700594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomass-derived versatile activated carbon removes both heavy metals and dye molecules from wastewater with near-unity efficiency: Mechanism and kinetics.
    Sherugar P; Padaki M; Naik NS; George SD; Murthy DHK
    Chemosphere; 2022 Jan; 287(Pt 2):132085. PubMed ID: 34492412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.
    Suzuki Y; Kametani T; Maruyama T
    Water Res; 2005 May; 39(9):1803-8. PubMed ID: 15899278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential bioremediation effects of seaweed Gracilaria lemaneiformis on heavy metals in coastal sediment from a typical mariculture zone.
    Luo H; Wang Q; Liu Z; Wang S; Long A; Yang Y
    Chemosphere; 2020 Apr; 245():125636. PubMed ID: 31869668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review.
    Liu Q; Zhou Y; Lu J; Zhou Y
    Chemosphere; 2020 Feb; 241():125043. PubMed ID: 31683417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of algae for removing heavy metal ions from wastewater: progress and prospects.
    Mehta SK; Gaur JP
    Crit Rev Biotechnol; 2005; 25(3):113-52. PubMed ID: 16294830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater.
    Khan AA; Gul J; Naqvi SR; Ali I; Farooq W; Liaqat R; AlMohamadi H; Štěpanec L; Juchelková D
    Chemosphere; 2022 Nov; 306():135565. PubMed ID: 35793745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of biodegradable cellulose-based biomass materials in wastewater treatment.
    Jiang Z; Ho SH; Wang X; Li Y; Wang C
    Environ Pollut; 2021 Dec; 290():118087. PubMed ID: 34488155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.
    Burakov AE; Galunin EV; Burakova IV; Kucherova AE; Agarwal S; Tkachev AG; Gupta VK
    Ecotoxicol Environ Saf; 2018 Feb; 148():702-712. PubMed ID: 29174989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial biomass: an economical alternative for removal of heavy metals from waste water.
    Gupta R; Mohapatra H
    Indian J Exp Biol; 2003 Sep; 41(9):945-66. PubMed ID: 15242288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa.
    R L; Rejiniemon TS; Sathya R; Kuppusamy P; Al-Mekhlafi FA; Wadaan MA; Rajendran P
    Chemosphere; 2022 Nov; 306():135479. PubMed ID: 35753418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses.
    Das TK; Poater A
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioadsorbents from algae residues for heavy metal ions adsorption: chemical modification, adsorption behaviour and mechanism.
    Li R; Zhang T; Zhong H; Song W; Zhou Y; Yin X
    Environ Technol; 2021 Aug; 42(20):3132-3143. PubMed ID: 31996100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New trends in removing heavy metals from wastewater.
    Zhao M; Xu Y; Zhang C; Rong H; Zeng G
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6509-6518. PubMed ID: 27318819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.