BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 35209196)

  • 21. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution.
    Halim MA; Rahman MM; Megharaj M; Naidu R
    J Agric Food Chem; 2020 Nov; 68(47):13497-13529. PubMed ID: 33170689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bio Prospecting of Endophytes and PGPRs in Artemisinin Production for the Socio-economic Advancement.
    Nath A; Sharma A; Singh SK; Sundaram S
    Curr Microbiol; 2023 Nov; 81(1):4. PubMed ID: 37947887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudomonas fluorescens LBUM677 differentially increases plant biomass, total oil content and lipid composition in three oilseed crops.
    Jiménez JA; Novinscak A; Filion M
    J Appl Microbiol; 2020 Apr; 128(4):1119-1127. PubMed ID: 31793115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review.
    Khan N; Ali S; Shahid MA; Mustafa A; Sayyed RZ; Curá JA
    Cells; 2021 Jun; 10(6):. PubMed ID: 34205352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies.
    Lobo CB; Juárez Tomás MS; Viruel E; Ferrero MA; Lucca ME
    Microbiol Res; 2019 Feb; 219():12-25. PubMed ID: 30642462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review.
    Guo J; Muhammad H; Lv X; Wei T; Ren X; Jia H; Atif S; Hua L
    Chemosphere; 2020 May; 246():125823. PubMed ID: 31927380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.
    Bhattacharyya PN; Jha DK
    World J Microbiol Biotechnol; 2012 Apr; 28(4):1327-50. PubMed ID: 22805914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling.
    Bukhat S; Imran A; Javaid S; Shahid M; Majeed A; Naqqash T
    Microbiol Res; 2020 Sep; 238():126486. PubMed ID: 32464574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives.
    Meena M; Swapnil P; Divyanshu K; Kumar S; Harish ; Tripathi YN; Zehra A; Marwal A; Upadhyay RS
    J Basic Microbiol; 2020 Oct; 60(10):828-861. PubMed ID: 32815221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products.
    Vasseur-Coronado M; du Boulois HD; Pertot I; Puopolo G
    Microbiol Res; 2021 Apr; 245():126672. PubMed ID: 33418398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions.
    Liu J; Tang L; Gao H; Zhang M; Guo C
    J Sci Food Agric; 2019 Jan; 99(1):281-289. PubMed ID: 29855046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing rhizosphere microbiota of peanut (Arachis hypogaea L.) from pre-sowing to post-harvest of crop under field conditions.
    Hinsu AT; Panchal KJ; Pandit RJ; Koringa PG; Kothari RK
    Sci Rep; 2021 Aug; 11(1):17457. PubMed ID: 34465845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harnessing the plant microbiome to promote the growth of agricultural crops.
    Zhang J; Cook J; Nearing JT; Zhang J; Raudonis R; Glick BR; Langille MGI; Cheng Z
    Microbiol Res; 2021 Apr; 245():126690. PubMed ID: 33460987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress.
    Miransari M; Mahdavi S; Smith D
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7201-7213. PubMed ID: 34519854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources.
    Yu M; Gouvinhas I; Rocha J; Barros AIRNA
    Sci Rep; 2021 May; 11(1):10041. PubMed ID: 33976317
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Hashem A; Tabassum B; Fathi Abd Allah E
    Saudi J Biol Sci; 2019 Sep; 26(6):1291-1297. PubMed ID: 31516360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development.
    Yeshi K; Crayn D; Ritmejerytė E; Wangchuk P
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria.
    Emmanuel OC; Babalola OO
    Microbiol Res; 2020 Oct; 239():126569. PubMed ID: 32771873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability.
    Abdelsattar AM; Elsayed A; El-Esawi MA; Heikal YM
    Plant Physiol Biochem; 2023 May; 198():107673. PubMed ID: 37030249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems.
    Khatoon Z; Huang S; Rafique M; Fakhar A; Kamran MA; Santoyo G
    J Environ Manage; 2020 Nov; 273():111118. PubMed ID: 32741760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.