These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35209387)

  • 1. Color-selective geometric-phase lenses for focusing and imaging based on liquid crystal polymer films.
    Li L; Shi S; Kim J; Escuti MJ
    Opt Express; 2022 Jan; 30(2):2487-2502. PubMed ID: 35209387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatic aberration correction in bi-focal augmented reality display by the multi-layer Pancharatnam-Berry phase lens.
    Ma Y; Zhang W; Liu Y; Tian T; Luo D
    Opt Express; 2022 May; 30(11):18772-18780. PubMed ID: 36221671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications.
    Yin K; Hsiang EL; Zou J; Li Y; Yang Z; Yang Q; Lai PC; Lin CL; Wu ST
    Light Sci Appl; 2022 May; 11(1):161. PubMed ID: 35637183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric-phase-based axicon lens for computational achromatic imaging.
    Ren J; Zhou Y; Shao Z; Zhu C; Fan F; Tang D
    Opt Lett; 2023 Jul; 48(14):3737-3740. PubMed ID: 37450738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super achromatic wide-angle quarter-wave plates using multi-twist retarders.
    Li L; Escuti MJ
    Opt Express; 2021 Mar; 29(5):7464-7478. PubMed ID: 33726247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjustable hybrid diffractive/refractive achromatic lens.
    Valley P; Savidis N; Schwiegerling J; Dodge MR; Peyman G; Peyghambarian N
    Opt Express; 2011 Apr; 19(8):7468-79. PubMed ID: 21503055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved saturation and wide-viewing angle color filters based on multi-twist retarders.
    Li L; Shi S; Escuti MJ
    Opt Express; 2021 Feb; 29(3):4124-4138. PubMed ID: 33770998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid crystal lens set in augmented reality systems and virtual reality systems for rapidly varifocal images and vision correction.
    Lin YH; Huang TW; Huang HH; Wang YJ
    Opt Express; 2022 Jun; 30(13):22768-22778. PubMed ID: 36224967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorful multi-plane augmented reality display with dynamically tunable reflective Pancharatnam-Berry phase lens.
    Yan X; Zhu J; Liu M; Liu Y; Luo D
    Opt Express; 2024 Mar; 32(6):9161-9170. PubMed ID: 38571155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-Color Holographic Display and Encryption with Full-Polarization Degree of Freedom.
    Guo X; Zhong J; Li B; Qi S; Li Y; Li P; Wen D; Liu S; Wei B; Zhao J
    Adv Mater; 2022 Jan; 34(3):e2103192. PubMed ID: 34363242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bandwidth-unlimited polarization-maintaining metasurfaces.
    Song Q; Khadir S; Vézian S; Damilano B; Mierry PD; Chenot S; Brandli V; Genevet P
    Sci Adv; 2021 Jan; 7(5):. PubMed ID: 33514552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast refocusing lens based on ferroelectric liquid crystals.
    Mukherjee S; Yuan ZN; Sun ZB; Li AR; Kang CB; Kwok HS; Srivastava AK
    Opt Express; 2021 Mar; 29(6):8258-8267. PubMed ID: 33820275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically tunable polarization independent liquid crystal lenses based on orthogonally anisotropic orientations on adjacent micro-domains.
    Lin YH; Wang YJ; Hu GL; Reshetnyak V
    Opt Express; 2021 Aug; 29(18):29215-29227. PubMed ID: 34615036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid crystal integrated metalens with dynamic focusing property.
    Zhou S; Shen Z; Li X; Ge S; Lu Y; Hu W
    Opt Lett; 2020 Aug; 45(15):4324-4327. PubMed ID: 32735289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an ultra-compact optical combiner for augmented reality using geometric phase lenses.
    Cui W; Chang C; Gao L
    Opt Lett; 2020 May; 45(10):2808-2811. PubMed ID: 32412472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals.
    Lin SH; Huang LS; Lin CH; Kuo CT
    Opt Express; 2014 Jan; 22(1):925-30. PubMed ID: 24515052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-induced refractive index variation in the dark conglomerate phase for polarization-independent switchable liquid crystal lenses.
    Milton HE; Nagaraj M; Kaur S; Jones JC; Morgan PB; Gleeson HF
    Appl Opt; 2014 Nov; 53(31):7278-84. PubMed ID: 25402888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Efficiency Visible Transmitting Polarizations Devices Based on the GaN Metasurface.
    Guo Z; Xu H; Guo K; Shen F; Zhou H; Zhou Q; Gao J; Yin Z
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29762543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles.
    Xiang X; Kim J; Escuti MJ
    Sci Rep; 2018 May; 8(1):7202. PubMed ID: 29740091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid crystal-based square lens array with tunable focal length.
    Kim J; Kim J; Na JH; Lee B; Lee SD
    Opt Express; 2014 Feb; 22(3):3316-24. PubMed ID: 24663622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.