These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35209444)

  • 1. Arbitrary-order three-point finite difference method for the modal analysis of chiral waveguides.
    Cao Y
    Opt Express; 2022 Feb; 30(4):4680-4691. PubMed ID: 35209444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative study of the effect of cladding thickness on modal confinement loss in photonic waveguides.
    Jiang S; Lai J
    Opt Express; 2016 Oct; 24(22):24872-24882. PubMed ID: 27828428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Analysis of Terahertz Dielectric-Loaded Graphene Waveguide.
    Teng D; Wang K
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide.
    Skorobogatiy MA; Kabashin A
    Opt Express; 2006 Sep; 14(18):8419-24. PubMed ID: 19529219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of vector finite-difference techniques for modal analysis.
    Wik M; Dumas D; Yevick D
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jul; 22(7):1341-7. PubMed ID: 16053155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient full-vectorial modal analysis based on immersed interface method for dielectric chiral optical fibers.
    Cao Y
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):1957-1967. PubMed ID: 31873365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetric Graphene Dielectric Nanowaveguides as Ultra-Compact Photonic Structures.
    Teng D; Wang Y; Xu T; Wang H; Shao Q; Tang Y
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling microwave power structures based on k-furcated waveguides arbitrarily filled with materials by modal techniques.
    Pitarch J; Catalá-Civera JM; Peñaranda-Foix FL; García-Baños B
    J Microw Power Electromagn Energy; 2007; 41(4):46-61. PubMed ID: 18557397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient and high-order convergence mode solver for solving graphene and phosphorene-based waveguides.
    Huang CC
    Opt Express; 2021 Jan; 29(2):1147-1161. PubMed ID: 33726336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite-difference frequency-domain method for full-vectorial mode solutions of anisotropic optical waveguides with arbitrary permittivity tensor.
    Chen MY; Hsu SM; Chang HC
    Opt Express; 2009 Apr; 17(8):5965-79. PubMed ID: 19365415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach.
    Ou Y; Pardo D; Chen Y
    Opt Express; 2015 Nov; 23(23):30259-69. PubMed ID: 26698506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of surface plasmon polaritons in a dielectrically chiral-metal-chiral waveguiding structure.
    Zhang Q; Li J
    Opt Lett; 2016 Jul; 41(14):3241-4. PubMed ID: 27420505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
    Chen T; Sun J; Li L
    Opt Express; 2012 Aug; 20(18):20043-58. PubMed ID: 23037057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides.
    Chen C; Sharkawy A; Pustai D; Shi S; Prather D
    Opt Express; 2003 Nov; 11(23):3153-9. PubMed ID: 19471440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Tapered Circular Depressed-Cladding Waveguides in Nd:YAG Crystal by Femtosecond-Laser Direct Inscription.
    Romero C; García Ajates J; Chen F; Vázquez de Aldana JR
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of grating theories in integrated optics.
    Silberstein E; Lalanne P; Hugonin JP; Cao Q
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2865-75. PubMed ID: 11688876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel microgenetic algorithm design for photonic crystal and waveguide structures.
    Jiang J; Cai J; Nordin GP; Li L
    Opt Lett; 2003 Dec; 28(23):2381-3. PubMed ID: 14680189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbitrary-order interface conditions for slab structures and their applications in waveguide analysis.
    Chiou YP; Du CH
    Opt Express; 2010 Mar; 18(5):4088-102. PubMed ID: 20389423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equivalent-optical-waveguide model for the analysis of optical waveguides by means of an asymptotic effective-index method.
    Rodríguez J; Fernández S; Palacios SL; Crespo RD; Fernández JM; Guinea A; Virgós JM; Olivares J
    Appl Opt; 1995 Sep; 34(27):6172-9. PubMed ID: 21060460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical performance of finite-difference modal methods for the electromagnetic analysis of one-dimensional lamellar gratings.
    Lalanne P; Hugonin JP
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jun; 17(6):1033-42. PubMed ID: 10850473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.