These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35209545)

  • 1. Analyzing light-structuring features of droplet lenses on liquid-repelling surfaces.
    Bobkova V; Trinschek S; Otte E; Denz C
    Opt Express; 2022 Feb; 30(4):5937-5952. PubMed ID: 35209545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self‑propelled droplets on heated surfaces with angled self‑assembled micro/nanostructures.
    Kruse C; Somanas I; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Microfluid Nanofluidics; 2015; 18(5-6):1417-1424. PubMed ID: 30410430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving superamphiphobicity by mimicking tree-branch topography.
    Ding W; Dorao CA; Fernandino M
    J Colloid Interface Sci; 2022 Apr; 611():118-128. PubMed ID: 34933190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets.
    Ok JT; Choi J; Brown E; Park S
    Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces.
    Murugadoss K; Dhar P; Das SK
    Eur Phys J E Soft Matter; 2017 Jan; 40(1):1. PubMed ID: 28083793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-propelled Leidenfrost droplets on a heated glycerol pool.
    Matsumoto R; Hasegawa K
    Sci Rep; 2021 Feb; 11(1):3954. PubMed ID: 33597605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures.
    Hu S; Reddyhoff T; Li J; Cao X; Shi X; Peng Z; deMello AJ; Dini D
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31310-31319. PubMed ID: 34171192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces.
    Al-Azawi A; Latikka M; Jokinen V; Franssila S; Ras RHA
    Small; 2017 Oct; 13(38):. PubMed ID: 28815888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets.
    Liu C; Sun K; Lu C; Su J; Han L; Wang Z; Liu Y
    J Colloid Interface Sci; 2020 Jun; 569():229-234. PubMed ID: 32113020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid-Liquid Interactions.
    Wong WSY; Tricoli A
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13999-14007. PubMed ID: 29617552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-wavelength Laser Nanopatterning using Droplet Lenses.
    Duocastella M; Florian C; Serra P; Diaspro A
    Sci Rep; 2015 Nov; 5():16199. PubMed ID: 26541765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lubricant-Mediated Strong Droplet Adhesion on Lubricant-Impregnated Surfaces.
    Li J; Li W; Tang X; Han X; Wang L
    Langmuir; 2021 Jul; 37(28):8607-8615. PubMed ID: 34213350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy.
    Ensikat HJ; Schulte AJ; Koch K; Barthlott W
    Langmuir; 2009 Nov; 25(22):13077-83. PubMed ID: 19899819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of the Leidenfrost effect via low frequency vibrations.
    Ng BT; Hung YM; Tan MK
    Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the Relationship of Surface Roughness on Superliquid-Repelling Properties with Randomly Distributed Rough Surface Structures.
    Zhi J; Wang S; Zhang J; Duan X; Wang J
    Langmuir; 2022 Oct; 38(42):12841-12848. PubMed ID: 36215102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss-Free Photo-Manipulation of Droplets by Pyroelectro-Trapping on Superhydrophobic Surfaces.
    Tang X; Wang L
    ACS Nano; 2018 Sep; 12(9):8994-9004. PubMed ID: 30125483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.