These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources. Zorin I; Gattinger P; Ebner A; Brandstetter M Opt Express; 2022 Feb; 30(4):5222-5254. PubMed ID: 35209491 [TBL] [Abstract][Full Text] [Related]
4. Ultra-broadband spectroscopy using a 2-11.5 µm IDFG-based supercontinuum source. Krebbers R; van Kempen K; Harren FJM; Vasilyev S; Peterse IF; Lücker S; Khodabakhsh A; Cristescu SM Opt Express; 2024 Apr; 32(8):14506-14520. PubMed ID: 38859393 [TBL] [Abstract][Full Text] [Related]
5. Spectral-Coding-Based Compressive Single-Pixel NIR Spectroscopy in the Sub-Millisecond Regime. Gattinger P; Zorin I; Rankl C; Brandstetter M Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451004 [TBL] [Abstract][Full Text] [Related]
6. Absolute detector-based spectrally tunable radiant source using digital micromirror device and supercontinuum fiber laser. Li Z; Wang X; Zheng Y; Li F Appl Opt; 2017 Jun; 56(17):5073-5079. PubMed ID: 29047658 [TBL] [Abstract][Full Text] [Related]
7. Near-Infrared Spectroscopy Using a Supercontinuum Laser: Application to Long Wavelength Transmission Spectra of Barley Endosperm and Oil. Ringsted T; Dupont S; Ramsay J; Jespersen BM; Sørensen KM; Keiding SR; Engelsen SB Appl Spectrosc; 2016 Jul; 70(7):1176-85. PubMed ID: 27340221 [TBL] [Abstract][Full Text] [Related]
12. Sensitive multi-species photoacoustic gas detection based on mid-infrared supercontinuum source and miniature multipass cell. Mikkonen T; Hieta T; Genty G; Toivonen J Phys Chem Chem Phys; 2022 Aug; 24(32):19481-19487. PubMed ID: 35929451 [TBL] [Abstract][Full Text] [Related]
13. An Artificial Neural Network to Eliminate the Detrimental Spectral Shift on Mid-Infrared Gas Spectroscopy. Chin S; Van Zaen J; Denis S; Muntané E; Schröder S; Martin H; Balet L; Lecomte S Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837060 [TBL] [Abstract][Full Text] [Related]
14. Quantitative gas pressure measurement by molecular spectroscopy using chip-based supercontinuum in the mid-infrared. Hwang J; Park S; Ko K; Suk D; Lee YH; Choi DY; Rotermund F; Ko KH; Lee H Opt Express; 2023 Oct; 31(22):35624-35631. PubMed ID: 38017729 [TBL] [Abstract][Full Text] [Related]
15. Applicability of a gas analyzer with dual quantum cascade lasers for simultaneous measurements of N Wang D; Wang K; Zheng X; Butterbach-Bahl K; Díaz-Pinés E; Chen H Sci Total Environ; 2020 Aug; 729():138784. PubMed ID: 32361435 [TBL] [Abstract][Full Text] [Related]
16. High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier. Geng J; Wang Q; Jiang S Appl Opt; 2012 Mar; 51(7):834-40. PubMed ID: 22410883 [TBL] [Abstract][Full Text] [Related]
17. Mid-infrared hyperspectral sensor based on MEMS Fabry-Pérot interferometer for stand-off sensing applications. Saleh A; Mekhrengin M; Dönsberg T; Kääriäinen T; Genoud G; Toivonen J Sci Rep; 2022 Nov; 12(1):19392. PubMed ID: 36371513 [TBL] [Abstract][Full Text] [Related]
18. Accounting for spectroscopic effects in laser-based open-path eddy covariance flux measurements. Burba G; Anderson T; Komissarov A Glob Chang Biol; 2019 Jun; 25(6):2189-2202. PubMed ID: 30849208 [TBL] [Abstract][Full Text] [Related]
19. Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers. Kilgus J; Duswald K; Langer G; Brandstetter M Appl Spectrosc; 2018 Apr; 72(4):634-642. PubMed ID: 29164925 [TBL] [Abstract][Full Text] [Related]
20. An oscillator-driven, time-resolved optical pump/NIR supercontinuum probe spectrometer. Rai M; Deeg WE; Lu B; Brandmier K; Miller AM; Torchinsky DH Opt Lett; 2023 Feb; 48(3):570-573. PubMed ID: 36723533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]