These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 35209612)

  • 1. Temporal compressive imaging reconstruction based on a 3D-CNN network.
    Zhang L; Lam EY; Ke J
    Opt Express; 2022 Jan; 30(3):3577-3591. PubMed ID: 35209612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. End-to-end integrated pipeline for underwater optical signal detection using 1D integral imaging capture with a convolutional neural network.
    Huang Y; Krishnan G; O'Connor T; Joshi R; Javidi B
    Opt Express; 2023 Jan; 31(2):1367-1385. PubMed ID: 36785173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging.
    Xu J; Liu H
    Phys Med Biol; 2019 Sep; 64(18):185016. PubMed ID: 31292287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease.
    Hauptmann A; Arridge S; Lucka F; Muthurangu V; Steeden JA
    Magn Reson Med; 2019 Feb; 81(2):1143-1156. PubMed ID: 30194880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underwater object detection and temporal signal detection in turbid water using 3D-integral imaging and deep learning.
    Joshi R; Usmani K; Krishnan G; Blackmon F; Javidi B
    Opt Express; 2024 Jan; 32(2):1789-1801. PubMed ID: 38297723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-learning based photon-efficient 3D and reflectivity imaging with a 64 × 64 single-photon avalanche detector array.
    Yang X; Tong Z; Jiang P; Xu L; Wu L; Hu J; Yang C; Zhang W; Zhang Y; Zhang J
    Opt Express; 2022 Aug; 30(18):32948-32964. PubMed ID: 36242346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
    Lin Z; Gong T; Wang K; Li Z; He H; Tong Q; Yu F; Zhong J
    Med Phys; 2019 Jul; 46(7):3101-3116. PubMed ID: 31009085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI.
    El-Rewaidy H; Neisius U; Mancio J; Kucukseymen S; Rodriguez J; Paskavitz A; Menze B; Nezafat R
    NMR Biomed; 2020 Jul; 33(7):e4312. PubMed ID: 32352197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.
    Ma G; Zhang Y; Zhao X; Wang T; Li H
    Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-learning-based single-photon-counting compressive imaging via jointly trained subpixel convolution sampling.
    Li WC; Yan QR; Guan YQ; Yang ST; Peng C; Fang ZY
    Appl Opt; 2020 Aug; 59(23):6828-6837. PubMed ID: 32788773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging.
    Lauzier PT; Tang J; Speidel MA; Chen GH
    Med Phys; 2012 Jul; 39(7):4079-92. PubMed ID: 22830741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive spectral imaging system for soil classification with three-dimensional convolutional neural network.
    Yu Y; Xu T; Shen Z; Zhang Y; Wang X
    Opt Express; 2019 Aug; 27(16):23029-23048. PubMed ID: 31510586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Spatial-Temporal Resolution Reconstruction of Plane-Wave Ultrasound Images With a Multichannel Multiscale Convolutional Neural Network.
    Zhou Z; Wang Y; Yu J; Guo Y; Guo W; Qi Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):1983-1996. PubMed ID: 30113895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset.
    Chen D; Schaeffter T; Kolbitsch C; Kofler A
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of undersampled 3D non-Cartesian image-based navigators for coronary MRA using an unrolled deep learning model.
    Malavé MO; Baron CA; Koundinyan SP; Sandino CM; Ong F; Cheng JY; Nishimura DG
    Magn Reson Med; 2020 Aug; 84(2):800-812. PubMed ID: 32011021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Snapshot temporal compressive microscopy using an iterative algorithm with untrained neural networks.
    Qiao M; Liu X; Yuan X
    Opt Lett; 2021 Apr; 46(8):1888-1891. PubMed ID: 33857096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.