These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35209792)

  • 1. Optical measurements of eardrum vibrations and sound propagation in the ear canal for the fitting of active middle ear implants.
    Böck K; Böhnke F; Rahne T; Strenger T
    Acta Otolaryngol; 2022 Feb; 142(2):140-153. PubMed ID: 35209792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibroplasty combined with tympanic membrane reconstruction in middle ear ventilation disorders.
    Müller C; Zahnert T; Ossmann S; Neudert M; Bornitz M
    Hear Res; 2019 Jul; 378():166-175. PubMed ID: 30878272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Laser vibrometry. A middle ear and cochlear analyzer for noninvasive studies of middle and inner ear function disorders].
    Rodriguez Jorge J; Zenner HP; Hemmert W; Burkhardt C; Gummer AW
    HNO; 1997 Dec; 45(12):997-1007. PubMed ID: 9486381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforced active middle ear implant fixation in incus vibroplasty.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Hagen R; Gummer AW; Schraven SP
    Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air- and Bone-Conducted Sources of Feedback With an Active Middle Ear Implant.
    Banakis Hartl RM; Easter JR; Alhussaini MA; Tollin DJ; Jenkins HA
    Ear Hear; 2019; 40(3):725-731. PubMed ID: 30199397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration Measurements of the Gerbil Eardrum Under Quasi-static Pressure Sweeps.
    Kose O; Funnell WRJ; Daniel SJ
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):739-750. PubMed ID: 36100816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Doppler vibrometry of the middle ear in humans: derivation dependence, variability, and bilateral differences.
    Arechvo I; Lasurashvili N; Bornitz M; Kevanishvili Z; Zahnert T
    Medicina (Kaunas); 2009; 45(11):878-86. PubMed ID: 20051720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to estimate sound energy entering the middle ear.
    Chen S; Deng J; Bian L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of middle ear transfer function in temporal bones using electromagnetic excitation: Comparison to sound excitation and evaluation of influencing factors.
    Polk ML; Darbinjan A; Bornitz M; Seidler H; Bendas A; Zahnert T; Neudert M
    Hear Res; 2021 Jun; 405():108233. PubMed ID: 33915399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New clinical applications for laser Doppler vibrometry in otology].
    Strenger T; Brandstetter M; Stark T; Böhnke F
    HNO; 2018 Apr; 66(4):265-279. PubMed ID: 29417191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations and Measurements of Human Middle Ear Vibrations Using Multi-Body Systems and Laser-Doppler Vibrometry with the Floating Mass Transducer.
    Böhnke F; Bretan T; Lehner S; Strenger T
    Materials (Basel); 2013 Oct; 6(10):4675-4688. PubMed ID: 28788354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound propagation in the ear canal and coupling to the eardrum, with measurements on model systems.
    Stinson MR; Khanna SM
    J Acoust Soc Am; 1989 Jun; 85(6):2481-91. PubMed ID: 2745873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spatial distribution of sound pressure within scaled replicas of the human ear canal.
    Stinson MR
    J Acoust Soc Am; 1985 Nov; 78(5):1596-602. PubMed ID: 4067075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 May; 137(5):2698-725. PubMed ID: 25994701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Active electronic cochlear implants for middle and inner ear hearing loss--a new era in ear surgery. I: Basic principles and recommendations on nomenclature].
    Zenner HP; Leysieffer H
    HNO; 1997 Oct; 45(10):749-57. PubMed ID: 9445847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.