BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 35209943)

  • 41. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering.
    Afridi MS; Fakhar A; Kumar A; Ali S; Medeiros FHV; Muneer MA; Ali H; Saleem M
    Microbiol Res; 2022 Dec; 265():127199. PubMed ID: 36137486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A New Strategy for the Selection of Epiphytic and Endophytic Bacteria for Enhanced Plant Performance.
    Balsanelli E; Pankievicz VC; Baura VA; de Oliveira Pedrosa F; de Souza EM
    Methods Mol Biol; 2019; 1991():247-256. PubMed ID: 31041778
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria.
    Martínez-Hidalgo P; Maymon M; Pule-Meulenberg F; Hirsch AM
    Can J Microbiol; 2019 Feb; 65(2):91-104. PubMed ID: 30226998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil.
    Barelli L; Waller AS; Behie SW; Bidochka MJ
    PLoS One; 2020; 15(4):e0231150. PubMed ID: 32275687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fire alters plant microbiome assembly patterns: integrating the plant and soil microbial response to disturbance.
    Dove NC; Klingeman DM; Carrell AA; Cregger MA; Schadt CW
    New Phytol; 2021 Jun; 230(6):2433-2446. PubMed ID: 33525047
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced removal of nitrate in the maize rhizosphere by plant growth-promoting Bacillus megaterium NCT-2, and its colonization pattern in response to nitrate.
    Chu S; Zhang D; Zhi Y; Wang B; Chi CP; Zhang D; Liu Y; Zhou P
    Chemosphere; 2018 Oct; 208():316-324. PubMed ID: 29883866
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Harnessing the plant microbiome to promote the growth of agricultural crops.
    Zhang J; Cook J; Nearing JT; Zhang J; Raudonis R; Glick BR; Langille MGI; Cheng Z
    Microbiol Res; 2021 Apr; 245():126690. PubMed ID: 33460987
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rhizosphere bacterial interactions and impact on plant health.
    Chepsergon J; Moleleki LN
    Curr Opin Microbiol; 2023 Jun; 73():102297. PubMed ID: 37002974
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of plant domestication on rhizosphere microbiome assembly and functions.
    Pérez-Jaramillo JE; Mendes R; Raaijmakers JM
    Plant Mol Biol; 2016 Apr; 90(6):635-44. PubMed ID: 26085172
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A framework for the targeted recruitment of crop-beneficial soil taxa based on network analysis of metagenomics data.
    Berihu M; Somera TS; Malik A; Medina S; Piombo E; Tal O; Cohen M; Ginatt A; Ofek-Lalzar M; Doron-Faigenboim A; Mazzola M; Freilich S
    Microbiome; 2023 Jan; 11(1):8. PubMed ID: 36635724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protists: Puppet Masters of the Rhizosphere Microbiome.
    Gao Z; Karlsson I; Geisen S; Kowalchuk G; Jousset A
    Trends Plant Sci; 2019 Feb; 24(2):165-176. PubMed ID: 30446306
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plant-Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants.
    Noman M; Ahmed T; Ijaz U; Shahid M; Azizullah ; Li D; Manzoor I; Song F
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202205
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods.
    Kaplan D; Maymon M; Agapakis CM; Lee A; Wang A; Prigge BA; Volkogon M; Hirsch AM
    Am J Bot; 2013 Sep; 100(9):1713-25. PubMed ID: 23975635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency.
    Wang Q; Ma L; Zhou Q; Chen B; Zhang X; Wu Y; Pan F; Huang L; Yang X; Feng Y
    Chemosphere; 2019 Nov; 234():769-776. PubMed ID: 31238273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Meta-omics integration approach reveals the effect of soil native microbiome diversity in the performance of inoculant
    Ferrarezi JA; Defant H; de Souza LF; Azevedo JL; Hungria M; Quecine MC
    Front Plant Sci; 2023; 14():1172839. PubMed ID: 37457347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biostimulation of Salicornia europaea L. crops with plant growth-promoting bacteria in laboratory and field conditions: effects on growth and metabolite profile.
    Ferreira MJ; Sierra-Garcia IN; Cremades J; António C; Rodrigues AM; Pinto DCGA; Silva H; Cunha Â
    J Appl Microbiol; 2023 Mar; 134(3):. PubMed ID: 36841232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Halophilic Plant-Associated Bacteria with Plant-Growth-Promoting Potential.
    Meinzer M; Ahmad N; Nielsen BL
    Microorganisms; 2023 Dec; 11(12):. PubMed ID: 38138054
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.
    Mendes R; Garbeva P; Raaijmakers JM
    FEMS Microbiol Rev; 2013 Sep; 37(5):634-63. PubMed ID: 23790204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacterial Community Members Increase
    Eckshtain-Levi N; Harris SL; Roscios RQ; Shank EA
    Phytobiomes J; 2020; 4(4):303-313. PubMed ID: 34661038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deciphering the Root Endosphere Microbiome of the Desert Plant
    Zhang L; Zhang W; Li Q; Cui R; Wang Z; Wang Y; Zhang YZ; Ding W; Shen X
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.