These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35210359)

  • 1. The dual role of martensitic transformation in fatigue crack growth.
    Wang X; Liu C; Sun B; Ponge D; Jiang C; Raabe D
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35210359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ 3D crystallographic characterization of deformation-induced martensitic transformation in a metastable Fe-Cr-Ni austenitic alloy by X-ray microtomography.
    Takakuwa O; Iwano T; Hirayama K; Toda H; Takeuchi A; Uesugi M
    Sci Rep; 2024 Jun; 14(1):14445. PubMed ID: 38910158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of Fracture and Martensite Transformation in Microstructures: A Coupled Problem.
    Farahani EB; Aragh BS; Juhre D
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Microstructure on the Onset Strain and Rate per Strain of Deformation-Induced Martensite Transformation in Q&P Steel by Modeling.
    Cao J; Jin J; Li S; Wang M; Tang S; Peng Q; Zong Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.
    Li SJ; Cui TC; Hao YL; Yang R
    Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy.
    Feng R; Rao Y; Liu C; Xie X; Yu D; Chen Y; Ghazisaeidi M; Ungar T; Wang H; An K; Liaw PK
    Nat Commun; 2021 Jun; 12(1):3588. PubMed ID: 34117250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation-Induced Martensitic Transformation in Laser Cladded 304 Stainless Steel Coatings.
    Zeuner AT; Gerdt L; Ostwald A; Grün P; Barbosa M; Kaspar J; Zimmermann M
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the mechanism of martensitic transformation via atomic-scale observations.
    Yang XS; Sun S; Wu XL; Ma E; Zhang TY
    Sci Rep; 2014 Aug; 4():6141. PubMed ID: 25142283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-induced detwinning and martensite transformation in an austenite Ni-Mn-Ga alloy with martensite cluster under uniaxial loading.
    Hou L; Niu Y; Dai Y; Ba L; Fautrelle Y; Li Z; Yang B; Esling C; Li X
    IUCrJ; 2019 May; 6(Pt 3):366-372. PubMed ID: 31098018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy.
    Leitner T; Sabirov I; Pippan R; Hohenwarter A
    J Mech Behav Biomed Mater; 2017 Jul; 71():337-348. PubMed ID: 28399494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Solution Annealing on Fatigue Crack Propagation in the AISI 304L TRIP Steel.
    Jambor M; Vojtek T; Pokorný P; Šmíd M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33801909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic insights into diamond-shaped 7M martensite in Ni-Mn-Ga ferromagnetic shape-memory alloys.
    Li ZB; Yang B; Zhang YD; Esling C; Zhao X; Zuo L
    IUCrJ; 2019 Sep; 6(Pt 5):909-920. PubMed ID: 31576223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Situ Study on Tensile Deformation and Fracture Mechanisms of Metastable β Titanium Alloy with Equiaxed Microstructure.
    Wang J; Zhao Y; Zhao Q; Lei C; Zhou W; Zeng W
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Observation of Thermoelastic Martensitic Transformation of Cu-Al-Mn Cryogenic Shape Memory Alloy with Compressive Stress.
    Bian Z; Song J; Liu P; Wan F; Lei Y; Wang Q; Yang S; Zhan Q; Chen L; Wang J
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.
    Hossain R; Pahlevani F; Quadir MZ; Sahajwalla V
    Sci Rep; 2016 Oct; 6():34958. PubMed ID: 27725722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New thermomechanically treated NiTi alloys - a review.
    Zupanc J; Vahdat-Pajouh N; Schäfer E
    Int Endod J; 2018 Oct; 51(10):1088-1103. PubMed ID: 29574784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Field Study of the Microstructural Dynamic Evolution and Mechanical Response of NiTi Shape Memory Alloy under Mechanical Loading.
    Xi S; Su Y
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33401688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Cycle Fatigue in the Transmission Electron Microscope.
    Bufford DC; Stauffer D; Mook WM; Syed Asif SA; Boyce BL; Hattar K
    Nano Lett; 2016 Aug; 16(8):4946-53. PubMed ID: 27351706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.