BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35210409)

  • 1. Cellular fractionation reveals transcriptome responses of human fibroblasts to UV-C irradiation.
    Liu J; Wu Z; He J; Wang Y
    Cell Death Dis; 2022 Feb; 13(2):177. PubMed ID: 35210409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear Fractionation Reveals Thousands of Chromatin-Tethered Noncoding RNAs Adjacent to Active Genes.
    Werner MS; Ruthenburg AJ
    Cell Rep; 2015 Aug; 12(7):1089-98. PubMed ID: 26257179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs.
    Ntini E; Budach S; Vang Ørom UA; Marsico A
    Cell Syst; 2023 Oct; 14(10):906-922.e6. PubMed ID: 37857083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-omic analysis of altered transcriptome and epigenetic signatures in the UV-induced DNA damage response.
    Liu J; Liu L; He J; Xu Y; Wang Y
    DNA Repair (Amst); 2021 Oct; 106():103172. PubMed ID: 34298489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic landscape of chromatin accessibility and transcriptomic changes during differentiation of human embryonic stem cells into dopaminergic neurons.
    Meléndez-Ramírez C; Cuevas-Diaz Duran R; Barrios-García T; Giacoman-Lozano M; López-Ornelas A; Herrera-Gamboa J; Estudillo E; Soto-Reyes E; Velasco I; Treviño V
    Sci Rep; 2021 Aug; 11(1):16977. PubMed ID: 34417498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions.
    Bhatt DM; Pandya-Jones A; Tong AJ; Barozzi I; Lissner MM; Natoli G; Black DL; Smale ST
    Cell; 2012 Jul; 150(2):279-90. PubMed ID: 22817891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress.
    Giannakakis A; Zhang J; Jenjaroenpun P; Nama S; Zainolabidin N; Aau MY; Yarmishyn AA; Vaz C; Ivshina AV; Grinchuk OV; Voorhoeve M; Vardy LA; Sampath P; Kuznetsov VA; Kurochkin IV; Guccione E
    Sci Rep; 2015 May; 5():9737. PubMed ID: 26024509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Properties and Functional Consequences of Noncoding Transcription.
    Ard R; Allshire RC; Marquardt S
    Genetics; 2017 Oct; 207(2):357-367. PubMed ID: 28978770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Long Noncoding RNA Transcriptome of
    Rosengarten RD; Santhanam B; Kokosar J; Shaulsky G
    G3 (Bethesda); 2017 Feb; 7(2):387-398. PubMed ID: 27932387
    [No Abstract]   [Full Text] [Related]  

  • 10. Long noncoding RNAs in lipid metabolism.
    van Solingen C; Scacalossi KR; Moore KJ
    Curr Opin Lipidol; 2018 Jun; 29(3):224-232. PubMed ID: 29553997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Interactions with Nascent Transcripts Is Potentially a Common Targeting Mechanism of Long Non-Coding RNAs.
    Antonov I; Medvedeva Y
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33321875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes.
    Andrade-Lima LC; Veloso A; Paulsen MT; Menck CF; Ljungman M
    Nucleic Acids Res; 2015 Mar; 43(5):2744-56. PubMed ID: 25722371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping Transcriptome-Wide and Genome-Wide RNA-DNA Contacts with Chromatin-Associated RNA Sequencing (ChAR-seq).
    Limouse C; Jukam D; Smith OK; Fryer KA; Straight AF
    Methods Mol Biol; 2020; 2161():115-142. PubMed ID: 32681510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs.
    Marques AC; Hughes J; Graham B; Kowalczyk MS; Higgs DR; Ponting CP
    Genome Biol; 2013 Nov; 14(11):R131. PubMed ID: 24289259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin.
    Duan M; Selvam K; Wyrick JJ; Mao P
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18608-18616. PubMed ID: 32690696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coding and noncoding transcriptome of Neurospora crassa.
    Cemel IA; Ha N; Schermann G; Yonekawa S; Brunner M
    BMC Genomics; 2017 Dec; 18(1):978. PubMed ID: 29258423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics.
    Nojima T; Proudfoot NJ
    Nat Rev Mol Cell Biol; 2022 Jun; 23(6):389-406. PubMed ID: 35079163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional prediction of differentially expressed lncRNAs in HSV-1 infected human foreskin fibroblasts.
    Hu B; Huo Y; Chen G; Yang L; Wu D; Zhou J
    Virol J; 2016 Aug; 13():137. PubMed ID: 27496175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns.
    Li Y; Chen H; Pan T; Jiang C; Zhao Z; Wang Z; Zhang J; Xu J; Li X
    Oncotarget; 2015 Nov; 6(37):39793-805. PubMed ID: 26485761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear lncRNAs as epigenetic regulators-beyond skepticism.
    Nakagawa S; Kageyama Y
    Biochim Biophys Acta; 2014 Mar; 1839(3):215-22. PubMed ID: 24200874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.