BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35210443)

  • 1. Unpacking the complexity of longitudinal movement and recruitment patterns of facultative amphidromous fish.
    Ramírez-Álvarez R; Contreras S; Vivancos A; Reid M; López-Rodríguez R; Górski K
    Sci Rep; 2022 Feb; 12(1):3164. PubMed ID: 35210443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facultative amphidromy involving estuaries in an annual amphidromous fish from a subtropical marginal range.
    Murase I; Iguchi K
    J Fish Biol; 2019 Dec; 95(6):1391-1398. PubMed ID: 31587274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-settlement migratory behaviour and growth-related costs in two diadromous fish species, Galaxias maculatus and Galaxias brevipinnis.
    Jung CA; Barbee NC; Swearer SE
    J Fish Biol; 2009 Aug; 75(3):503-15. PubMed ID: 20738553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated river discharge enhances the immigration of juvenile catadromous and amphidromous fishes into temperate coastal rivers.
    Amtstaetter F; Yen JDL; Hale R; Koster W; O'Connor J; Stuart I; Tonkin Z
    J Fish Biol; 2021 Jul; 99(1):61-72. PubMed ID: 33580711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of diadromy and its loss on genomic divergence: The case of amphidromous Galaxias maculatus populations.
    Delgado ML; Górski K; Habit E; Ruzzante DE
    Mol Ecol; 2019 Dec; 28(24):5217-5231. PubMed ID: 31652382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation Driven Divergence in Osmoregulation in Galaxias maculatus (Jenyns, 1848) (Actinopterygii: Osmeriformes).
    Ruiz-Jarabo I; González-Wevar CA; Oyarzún R; Fuentes J; Poulin E; Bertrán C; Vargas-Chacoff L
    PLoS One; 2016; 11(5):e0154766. PubMed ID: 27168069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ayu (Plecoglossus altivelis) in a contact zone between amphidromous and landlocked forms: genetic analyses of populations in the Yodo River system.
    Takeshima H; Lguchi K; Nishida M
    Zoolog Sci; 2009 Aug; 26(8):536-42. PubMed ID: 19719405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics.
    Smith WE; Kwak TJ
    J Fish Biol; 2014 Apr; 84(4):913-28. PubMed ID: 24673161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape edges shape dispersal and population structure of a migratory fish.
    Kaemingk MA; Swearer SE; Bury SJ; Shima JS
    Oecologia; 2019 Jul; 190(3):579-588. PubMed ID: 31230154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers.
    Radinger J; Essl F; Hölker F; Horký P; Slavík O; Wolter C
    Glob Chang Biol; 2017 Nov; 23(11):4970-4986. PubMed ID: 28500795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectivity of fish communities in a tropical floodplain river system and predicted impacts of potential new dams.
    O'Mara K; Venarsky M; Stewart-Koster B; McGregor GB; Schulz C; Kainz M; Marshall J; Bunn SE
    Sci Total Environ; 2021 Sep; 788():147785. PubMed ID: 34034195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A capture-recapture model of amphidromous fish dispersal.
    Smith WE; Kwak TJ
    J Fish Biol; 2014 Apr; 84(4):897-912. PubMed ID: 24673127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movements of diadromous fish in large unregulated tropical rivers inferred from geochemical tracers.
    Walther BD; Dempster T; Letnic M; McCulloch MT
    PLoS One; 2011 Apr; 6(4):e18351. PubMed ID: 21494693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological predictors of swimming speed performance in river and reservoir populations of Australian smelt Retropinna semoni.
    Svozil DP; Baumgartner LJ; Fulton CJ; Kopf RK; Watts RJ
    J Fish Biol; 2020 Dec; 97(6):1632-1643. PubMed ID: 32783221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dry season habitat use of fishes in an Australian tropical river.
    Keller K; Allsop Q; Brim Box J; Buckle D; Crook DA; Douglas MM; Jackson S; Kennard MJ; Luiz OJ; Pusey BJ; Townsend SA; King AJ
    Sci Rep; 2019 Apr; 9(1):5677. PubMed ID: 30952875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hitchhiking behaviour in the obligatory upstream migration of amphidromous snails.
    Kano Y
    Biol Lett; 2009 Aug; 5(4):465-8. PubMed ID: 19411267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a low-head weir on multi-scaled movement and behavior of three riverine fish species.
    Carpenter-Bundhoo L; Butler GL; Bond NR; Bunn SE; Reinfelds IV; Kennard MJ
    Sci Rep; 2020 Apr; 10(1):6817. PubMed ID: 32321932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the natural and anthropogenic influences on basin-wide fish species richness.
    Cheng ST; Herricks EE; Tsai WP; Chang FJ
    Sci Total Environ; 2016 Dec; 572():825-836. PubMed ID: 27592326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stream and ocean hydrodynamics mediate partial migration strategies in an amphidromous Hawaiian goby.
    Lisi PJ; Hogan JD; Holt G; Moody KN; Wren JLK; Kobayashi DR; Blum MJ; McIntyre PB
    Ecology; 2022 Nov; 103(11):e3800. PubMed ID: 35726198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Juvenile river herring habitat use and marine emigration trends: comparing populations.
    Turner SM; Limburg KE
    Oecologia; 2016 Jan; 180(1):77-89. PubMed ID: 26369780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.