These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35211190)

  • 1. Automated Cardioailment Identification and Prevention by Hybrid Machine Learning Models.
    Archana KS; Sivakumar B; Kuppusamy R; Teekaraman Y; Radhakrishnan A
    Comput Math Methods Med; 2022; 2022():9797844. PubMed ID: 35211190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Based Automated Diagnostic Systems Developed for Heart Failure Prediction Using Different Types of Data Modalities: A Systematic Review and Future Directions.
    Javeed A; Khan SU; Ali L; Ali S; Imrana Y; Rahman A
    Comput Math Methods Med; 2022; 2022():9288452. PubMed ID: 35154361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms.
    Senan EM; Abunadi I; Jadhav ME; Fati SM
    Comput Math Methods Med; 2021; 2021():8500314. PubMed ID: 34966445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a Heart Disease Risk Prediction Model Using Machine Learning.
    Karthick K; Aruna SK; Samikannu R; Kuppusamy R; Teekaraman Y; Thelkar AR
    Comput Math Methods Med; 2022; 2022():6517716. PubMed ID: 35547562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Automated Disease Diagnosis Using Machine Learning Models.
    Kumar N; Narayan Das N; Gupta D; Gupta K; Bindra J
    J Healthc Eng; 2021; 2021():9983652. PubMed ID: 34035886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the use of association rules in random forest for predicting heart disease.
    Barry KA; Manzali Y; Flouchi R; Balouki Y; Chelhi K; Elfar M
    Comput Methods Biomech Biomed Engin; 2024 Mar; 27(3):338-346. PubMed ID: 36877167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring Cardiovascular Problems in Heart Patients Using Machine Learning.
    Al Ahdal A; Rakhra M; Rajendran RR; Arslan F; Khder MA; Patel B; Rajagopal BR; Jain R
    J Healthc Eng; 2023; 2023():9738123. PubMed ID: 36818386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Feature-Driven Decision Support System for Heart Failure Prediction Based on
    Ali L; Khan SU; Golilarz NA; Yakubu I; Qasim I; Noor A; Nour R
    Comput Math Methods Med; 2019; 2019():6314328. PubMed ID: 31885684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An idiosyncratic MIMBO-NBRF based automated system for child birth mode prediction.
    S H; V MA
    Artif Intell Med; 2023 Sep; 143():102621. PubMed ID: 37673564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of Visible Non-Invasive Risk Attributes for the Initial Prediction of Heart Disease Using Different Machine Learning Techniques.
    Ansarullah SI; Saif SM; Kumar P; Kirmani MM
    Comput Intell Neurosci; 2022; 2022():9580896. PubMed ID: 35237314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
    Awad A; Bader-El-Den M; McNicholas J; Briggs J
    Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cardiovascular risk factors and treatment exposure on cardiovascular event incidence: Assessment using machine learning algorithms.
    Castel-Feced S; Malo S; Aguilar-Palacio I; Feja-Solana C; Casasnovas JA; Maldonado L; Rabanaque-Hernández MJ
    PLoS One; 2023; 18(11):e0293759. PubMed ID: 37971977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new machine learning technique for an accurate diagnosis of coronary artery disease.
    Abdar M; Książek W; Acharya UR; Tan RS; Makarenkov V; Pławiak P
    Comput Methods Programs Biomed; 2019 Oct; 179():104992. PubMed ID: 31443858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid data mining model for diagnosis of patients with clinical suspicion of dementia.
    Moreira LB; Namen AA
    Comput Methods Programs Biomed; 2018 Oct; 165():139-149. PubMed ID: 30337069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fetal health status prediction based on maternal clinical history using machine learning techniques.
    Akbulut A; Ertugrul E; Topcu V
    Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters.
    Peng K; Tang Z; Dong L; Sun D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AttGRU-HMSI: enhancing heart disease diagnosis using hybrid deep learning approach.
    Rao GM; Ramesh D; Sharma V; Sinha A; Hassan MM; Gandomi AH
    Sci Rep; 2024 Apr; 14(1):7833. PubMed ID: 38570560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.