These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35211278)

  • 1. The smallest near-infrared fluorescence complementation system for imaging protein-protein and RNA-protein interactions.
    Chen M; Yan C; Zheng L; Zhang XE
    Chem Sci; 2022 Jan; 13(4):1119-1129. PubMed ID: 35211278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tandem near-infrared fluorescence complementation system with enhanced fluorescence for imaging protein-protein interactions in vivo.
    Chen M; Yan C; Ma Y; Zhang XE
    Biomaterials; 2021 Jan; 268():120544. PubMed ID: 33253968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel near-infrared BiFC systems from a bacterial phytochrome for imaging protein interactions and drug evaluation under physiological conditions.
    Chen M; Li W; Zhang Z; Liu S; Zhang X; Zhang XE; Cui Z
    Biomaterials; 2015 Apr; 48():97-107. PubMed ID: 25701035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo imaging of protein-protein and RNA-protein interactions using novel far-red fluorescence complementation systems.
    Han Y; Wang S; Zhang Z; Ma X; Li W; Zhang X; Deng J; Wei H; Li Z; Zhang XE; Cui Z
    Nucleic Acids Res; 2014 Jul; 42(13):e103. PubMed ID: 24813442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimolecular Fluorescence Complementation (BiFC) Assay for Direct Visualization of Protein-Protein Interaction
    Lai HT; Chiang CM
    Bio Protoc; 2013; 3(20):. PubMed ID: 27390756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions.
    Chu J; Zhang Z; Zheng Y; Yang J; Qin L; Lu J; Huang ZL; Zeng S; Luo Q
    Biosens Bioelectron; 2009 Sep; 25(1):234-9. PubMed ID: 19596565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions among SARS-CoV accessory proteins revealed by bimolecular fluorescence complementation assay.
    Kong J; Shi Y; Wang Z; Pan Y
    Acta Pharm Sin B; 2015 Sep; 5(5):487-92. PubMed ID: 26579480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing of biomolecular interactions using fluorescence complementing systems in living cells.
    Zhang XE; Cui Z; Wang D
    Biosens Bioelectron; 2016 Feb; 76():243-50. PubMed ID: 26316254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.
    Wang S; Ding M; Xue B; Hou Y; Sun Y
    ACS Chem Biol; 2018 May; 13(5):1180-1188. PubMed ID: 29283249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spying on protein interactions in living cells with reconstituted scarlet light.
    Wang S; Ding M; Xue B; Hou Y; Sun Y
    Analyst; 2018 Oct; 143(21):5161-5169. PubMed ID: 30255175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells.
    Fan JY; Cui ZQ; Wei HP; Zhang ZP; Zhou YF; Wang YP; Zhang XE
    Biochem Biophys Res Commun; 2008 Feb; 367(1):47-53. PubMed ID: 18158915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization and translocation of ternary Calcineurin-A/Calcineurin-B/Calmodulin-2 protein complexes by dual-color trimolecular fluorescence complementation.
    Offenborn JN; Waadt R; Kudla J
    New Phytol; 2015 Oct; 208(1):269-79. PubMed ID: 25919910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Planta Visualization of Protein Interactions Using Bimolecular Fluorescence Complementation (BiFC).
    Waadt R; Kudla J
    CSH Protoc; 2008 Apr; 2008():pdb.prot4995. PubMed ID: 21356813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimolecular fluorescence complementation for imaging protein interactions in plant hosts of microbial pathogens.
    Lee LY; Gelvin SB
    Methods Mol Biol; 2014; 1197():185-208. PubMed ID: 25172282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trimolecular Fluorescence Complementation (TriFC) Assay for Direct Visualization of RNA-Protein Interaction
    Seo JS; Chua NH
    Bio Protoc; 2017 Oct; 7(20):e2579. PubMed ID: 34595261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of mRNA-protein interactions in live cells using novel mCherry trimolecular fluorescence complementation systems.
    Yin J; Zhu D; Zhang Z; Wang W; Fan J; Men D; Deng J; Wei H; Zhang XE; Cui Z
    PLoS One; 2013; 8(11):e80851. PubMed ID: 24260494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel orange-colored bimolecular fluorescence complementation (BiFC) assay using monomeric Kusabira-Orange protein.
    Fujii Y; Yoshimura A; Kodama Y
    Biotechniques; 2018 Apr; 64(4):153-161. PubMed ID: 29661017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans.
    Hiatt SM; Shyu YJ; Duren HM; Hu CD
    Methods; 2008 Jul; 45(3):185-91. PubMed ID: 18586101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association.
    Robida AM; Kerppola TK
    J Mol Biol; 2009 Dec; 394(3):391-409. PubMed ID: 19733184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimolecular fluorescence complementation analysis of cytochrome p450 2c2, 2e1, and NADPH-cytochrome p450 reductase molecular interactions in living cells.
    Ozalp C; Szczesna-Skorupa E; Kemper B
    Drug Metab Dispos; 2005 Sep; 33(9):1382-90. PubMed ID: 15980100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.