These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35211724)

  • 1. cropCSM: designing safe and potent herbicides with graph-based signatures.
    Pires DEV; Stubbs KA; Mylne JS; Ascher DB
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35211724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. kinCSM: Using graph-based signatures to predict small molecule CDK2 inhibitors.
    Zhou Y; Al-Jarf R; Alavi A; Nguyen TB; Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2022 Nov; 31(11):e4453. PubMed ID: 36305769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mycoCSM: Using Graph-Based Signatures to Identify Safe Potent Hits against Mycobacteria.
    Pires DEV; Ascher DB
    J Chem Inf Model; 2020 Jul; 60(7):3450-3456. PubMed ID: 32615035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbicidal Secondary Metabolites from Actinomycetes: Structure Diversity, Modes of Action, and Their Roles in the Development of Herbicides.
    Shi L; Wu Z; Zhang Y; Zhang Z; Fang W; Wang Y; Wan Z; Wang K; Ke S
    J Agric Food Chem; 2020 Jan; 68(1):17-32. PubMed ID: 31809036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pdCSM-cancer: Using Graph-Based Signatures to Identify Small Molecules with Anticancer Properties.
    Al-Jarf R; de Sá AGC; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Jul; 61(7):3314-3322. PubMed ID: 34213323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. toxCSM: comprehensive prediction of small molecule toxicity profiles.
    de Sá AGC; Long Y; Portelli S; Pires DEV; Ascher DB
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35998885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CSM-AB: graph-based antibody-antigen binding affinity prediction and docking scoring function.
    Myung Y; Pires DEV; Ascher DB
    Bioinformatics; 2022 Jan; 38(4):1141-1143. PubMed ID: 34734992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug Chemical Space as a Guide for New Herbicide Development: A Cheminformatic Analysis.
    Wang Y; Xiong Y; Garcia EAL; Wang Y; Butch CJ
    J Agric Food Chem; 2022 Aug; 70(31):9625-9636. PubMed ID: 35915870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The search for new herbicide mechanisms of action: Is there a 'holy grail'?
    Duke SO; Dayan FE
    Pest Manag Sci; 2022 Apr; 78(4):1303-1313. PubMed ID: 34796620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cheminformatics review of auxins as herbicides.
    Quareshy M; Prusinska J; Li J; Napier R
    J Exp Bot; 2018 Jan; 69(2):265-275. PubMed ID: 28992122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pdCSM-GPCR: predicting potent GPCR ligands with graph-based signatures.
    Velloso JPL; Ascher DB; Pires DEV
    Bioinform Adv; 2021; 1(1):vbab031. PubMed ID: 34901870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pdCSM-PPI: Using Graph-Based Signatures to Identify Protein-Protein Interaction Inhibitors.
    Rodrigues CHM; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Nov; 61(11):5438-5445. PubMed ID: 34719929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HerbiPAD: a free web platform to comprehensively analyze constitutive property and herbicide-likeness to estimate chemical bioavailability.
    Huang JJ; Wang F; Ouyang Y; Huang YQ; Jia CY; Zhong H; Hao GF
    Pest Manag Sci; 2021 Mar; 77(3):1273-1281. PubMed ID: 33063413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interactive database to explore herbicide physicochemical properties.
    Gandy MN; Corral MG; Mylne JS; Stubbs KA
    Org Biomol Chem; 2015 May; 13(20):5586-90. PubMed ID: 25895669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review: amino acid biosynthesis as a target for herbicide development.
    Hall CJ; Mackie ER; Gendall AR; Perugini MA; Soares da Costa TP
    Pest Manag Sci; 2020 Dec; 76(12):3896-3904. PubMed ID: 32506606
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Iftkhar S; de Sá AGC; Velloso JPL; Aljarf R; Pires DEV; Ascher DB
    J Chem Inf Model; 2022 Oct; 62(20):4827-4836. PubMed ID: 36219164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can new herbicide discovery allow weed management to outpace resistance evolution?
    Gaines TA; Busi R; Küpper A
    Pest Manag Sci; 2021 Jul; 77(7):3036-3041. PubMed ID: 33942963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global perspective of herbicide-resistant weeds.
    Heap I
    Pest Manag Sci; 2014 Sep; 70(9):1306-15. PubMed ID: 24302673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-Ethoxy-4- N-(2-morpholin-4-ylethyl) -2-N-propan-2-yl-1,3, 5-triazine-2, 4-diamine endows herbicidal activity against Phalaris minor a weed of wheat crop field: An in -silico and experimental approaches of herbicide discovery.
    Kumar N; Rani P; Agarwal S; Singh DV
    J Mol Model; 2022 Mar; 28(4):77. PubMed ID: 35244782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where are the new herbicides?
    Qu RY; He B; Yang JF; Lin HY; Yang WC; Wu QY; Li QX; Yang GF
    Pest Manag Sci; 2021 Jun; 77(6):2620-2625. PubMed ID: 33460493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.