BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35211979)

  • 1. Identification of new marker genes from plant single-cell RNA-seq data using interpretable machine learning methods.
    Yan H; Lee J; Song Q; Li Q; Schiefelbein J; Zhao B; Li S
    New Phytol; 2022 May; 234(4):1507-1520. PubMed ID: 35211979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation.
    Nussbaum YI; Hossain KSMT; Kaifi J; Warren WC; Shyu CR; Mitchem JB
    J Biomed Inform; 2024 Jun; 154():104644. PubMed ID: 38631462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of cell markers from single cell RNA-seq with sc2marker.
    Li R; Banjanin B; Schneider RK; Costa IG
    BMC Bioinformatics; 2022 Jul; 23(1):276. PubMed ID: 35831796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data.
    Wang CX; Zhang L; Wang B
    Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scDEA: differential expression analysis in single-cell RNA-sequencing data via ensemble learning.
    Li HS; Ou-Yang L; Zhu Y; Yan H; Zhang XF
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing.
    Aevermann B; Zhang Y; Novotny M; Keshk M; Bakken T; Miller J; Hodge R; Lelieveldt B; Lein E; Scheuermann RH
    Genome Res; 2021 Oct; 31(10):1767-1780. PubMed ID: 34088715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probabilistic gene expression barcode for annotation of cell types from single-cell RNA-seq data.
    Grabski IN; Irizarry RA
    Biostatistics; 2022 Oct; 23(4):1150-1164. PubMed ID: 35770795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning.
    Wang J; Sun H; Mou L; Lu Y; Wu Z; Pu Z; Yang MM
    Front Endocrinol (Lausanne); 2024; 15():1382896. PubMed ID: 38800474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of marker gene selection methods for single-cell RNA sequencing data.
    Pullin JM; McCarthy DJ
    Genome Biol; 2024 Feb; 25(1):56. PubMed ID: 38409056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species.
    Stein-O'Brien GL; Clark BS; Sherman T; Zibetti C; Hu Q; Sealfon R; Liu S; Qian J; Colantuoni C; Blackshaw S; Goff LA; Fertig EJ
    Cell Syst; 2019 May; 8(5):395-411.e8. PubMed ID: 31121116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LINEAGE: Label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis.
    Lin L; Zhang Y; Qian W; Liu Y; Zhang Y; Lin F; Liu C; Lu G; Sun D; Guo X; Song Y; Song J; Yang C; Li J
    Proc Natl Acad Sci U S A; 2022 Feb; 119(5):. PubMed ID: 35086932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CACIMAR: cross-species analysis of cell identities, markers, regulations, and interactions using single-cell RNA sequencing data.
    Jiang J; Li J; Huang S; Jiang F; Liang Y; Xu X; Wang J
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38856169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell RNA Sequencing for Plant Research: Insights and Possible Benefits.
    Bawa G; Liu Z; Yu X; Qin A; Sun X
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CellTICS: an explainable neural network for cell-type identification and interpretation based on single-cell RNA-seq data.
    Yin Q; Chen L
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38061196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Cell Type Annotation Using Marker Genes for Single-Cell RNA Sequencing Data.
    Chen Y; Zhang S
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-seq assistant: machine learning based methods to identify more transcriptional regulated genes.
    Wang L; Xi Y; Sung S; Qiao H
    BMC Genomics; 2018 Jul; 19(1):546. PubMed ID: 30029596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.