These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35212009)

  • 1. On the shape of convolution kernels in MRI reconstruction: Rectangles versus ellipsoids.
    Lobos RA; Haldar JP
    Magn Reson Med; 2022 Jun; 87(6):2989-2996. PubMed ID: 35212009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 2D-GRAPPA Algorithm with a Boomerang Kernel for 3D MRI Data Accelerated along Two Phase-Encoding Directions.
    Shin S; Han Y; Chung JY
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving GRAPPA reconstruction using joint nonlinear kernel mapped and phase conjugated virtual coils.
    Wang H; Jia S; Chang Y; Zhu Y; Zou C; Li Y; Liu X; Zheng H; Liang D
    Phys Med Biol; 2019 Jul; 64(14):14NT01. PubMed ID: 31167169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon Counting Computed Tomography With Dedicated Sharp Convolution Kernels: Tapping the Potential of a New Technology for Stent Imaging.
    von Spiczak J; Mannil M; Peters B; Hickethier T; Baer M; Henning A; Schmidt B; Flohr T; Manka R; Maintz D; Alkadhi H
    Invest Radiol; 2018 Aug; 53(8):486-494. PubMed ID: 29794949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A learnable Gabor Convolution kernel for vessel segmentation.
    Chen C; Zhou K; Qi S; Lu T; Xiao R
    Comput Biol Med; 2023 May; 158():106892. PubMed ID: 37028143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K-space reconstruction with anisotropic kernel support (KARAOKE) for ultrafast partially parallel imaging.
    Miao J; Wong WC; Narayan S; Wilson DL
    Med Phys; 2011 Nov; 38(11):6138-42. PubMed ID: 22047378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CT Image Conversion among Different Reconstruction Kernels without a Sinogram by Using a Convolutional Neural Network.
    Lee SM; Lee JG; Lee G; Choe J; Do KH; Kim N; Seo JB
    Korean J Radiol; 2019 Feb; 20(2):295-303. PubMed ID: 30672169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data.
    Haldar JP; Zhuo J
    Magn Reson Med; 2016 Apr; 75(4):1499-514. PubMed ID: 25952136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling.
    Hosseini SAH; Zhang C; Weingärtner S; Moeller S; Stuber M; Ugurbil K; Akçakaya M
    PLoS One; 2020; 15(2):e0229418. PubMed ID: 32084235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel MRI with extended and averaged GRAPPA kernels (PEAK-GRAPPA): optimized spatiotemporal dynamic imaging.
    Jung B; Ullmann P; Honal M; Bauer S; Hennig J; Markl M
    J Magn Reson Imaging; 2008 Nov; 28(5):1226-32. PubMed ID: 18972331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LORAKS makes better SENSE: Phase-constrained partial fourier SENSE reconstruction without phase calibration.
    Kim TH; Setsompop K; Haldar JP
    Magn Reson Med; 2017 Mar; 77(3):1021-1035. PubMed ID: 27037836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CORE-PI: Non-iterative convolution-based reconstruction for parallel MRI in the wavelet domain.
    Shimron E; Webb AG; Azhari H
    Med Phys; 2019 Jan; 46(1):199-214. PubMed ID: 30365167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusing multi-scale information in convolution network for MR image super-resolution reconstruction.
    Liu C; Wu X; Yu X; Tang Y; Zhang J; Zhou J
    Biomed Eng Online; 2018 Aug; 17(1):114. PubMed ID: 30144798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On optimality of parallel MRI reconstruction in k-space.
    Samsonov AA
    Magn Reson Med; 2008 Jan; 59(1):156-64. PubMed ID: 18058935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning.
    Qiu D; Zhang S; Liu Y; Zhu J; Zheng L
    Comput Methods Programs Biomed; 2020 Apr; 187():105059. PubMed ID: 31582263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOKS: Automatic Searching of the Optimal Kernel Shapes for Stripe-Wise Network Pruning.
    Liu G; Zhang K; Lv M
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):9912-9924. PubMed ID: 35412989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling.
    Hong GQ; Wei YT; Morley WAW; Wan M; Mertens AJ; Su Y; Cheng HM
    Comput Med Imaging Graph; 2023 Jun; 106():102206. PubMed ID: 36857952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRI.
    Li Z; Xiao S; Wang C; Li H; Zhao X; Duan C; Zhou Q; Rao Q; Fang Y; Xie J; Shi L; Guo F; Ye C; Zhou X
    IEEE Trans Med Imaging; 2024 May; 43(5):1828-1840. PubMed ID: 38194397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.