These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 35212092)
1. Identifying climate thresholds for dominant natural vegetation types at the global scale using machine learning: Average climate versus extremes. Beigaitė R; Tang H; Bryn A; Skarpaas O; Stordal F; Bjerke JW; Žliobaitė I Glob Chang Biol; 2022 Jun; 28(11):3557-3579. PubMed ID: 35212092 [TBL] [Abstract][Full Text] [Related]
2. Multifaceted responses of vegetation to average and extreme climate change over global drylands. He L; Guo J; Yang W; Jiang Q; Chen L; Tang K Sci Total Environ; 2023 Feb; 858(Pt 2):159942. PubMed ID: 36343828 [TBL] [Abstract][Full Text] [Related]
3. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change. Islam ARMT; Islam HMT; Shahid S; Khatun MK; Ali MM; Rahman MS; Ibrahim SM; Almoajel AM J Environ Manage; 2021 Jul; 289():112505. PubMed ID: 33819656 [TBL] [Abstract][Full Text] [Related]
4. Global and regional modelling of Arctic-boreal vegetation distribution and its sensitivity to altered forcing. Kittel TGF; Steffen WL; Chapin FS Glob Chang Biol; 2000 Dec; 6(S1):1-18. PubMed ID: 35026933 [TBL] [Abstract][Full Text] [Related]
6. Trait-Based Climate Change Predictions of Vegetation Sensitivity and Distribution in China. Yang Y; Zhao J; Zhao P; Wang H; Wang B; Su S; Li M; Wang L; Zhu Q; Pang Z; Peng C Front Plant Sci; 2019; 10():908. PubMed ID: 31354775 [TBL] [Abstract][Full Text] [Related]
7. The detection and attribution of extreme reductions in vegetation growth across the global land surface. Yang H; Munson SM; Huntingford C; Carvalhais N; Knapp AK; Li X; Peñuelas J; Zscheischler J; Chen A Glob Chang Biol; 2023 Apr; 29(8):2351-2362. PubMed ID: 36630538 [TBL] [Abstract][Full Text] [Related]
8. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. Yang Y; Zhu Q; Peng C; Wang H; Xue W; Lin G; Wen Z; Chang J; Wang M; Liu G; Li S Sci Rep; 2016 Apr; 6():24110. PubMed ID: 27052108 [TBL] [Abstract][Full Text] [Related]
9. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics. Itter MS; Finley AO; D'Amato AW; Foster JR; Bradford JB Ecol Appl; 2017 Jun; 27(4):1082-1095. PubMed ID: 28182303 [TBL] [Abstract][Full Text] [Related]
10. Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations. Forkel M; Drüke M; Thurner M; Dorigo W; Schaphoff S; Thonicke K; von Bloh W; Carvalhais N Sci Rep; 2019 Dec; 9(1):18757. PubMed ID: 31822728 [TBL] [Abstract][Full Text] [Related]
11. Time-lag effects of global vegetation responses to climate change. Wu D; Zhao X; Liang S; Zhou T; Huang K; Tang B; Zhao W Glob Chang Biol; 2015 Sep; 21(9):3520-31. PubMed ID: 25858027 [TBL] [Abstract][Full Text] [Related]
12. Extreme Precipitation and Flooding Contribute to Sudden Vegetation Dieback in a Coastal Salt Marsh. Stagg CL; Osland MJ; Moon JA; Feher LC; Laurenzano C; Lane TC; Jones WR; Hartley SB Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579374 [TBL] [Abstract][Full Text] [Related]
13. [Review of dynamic global vegetation models (DGVMs)]. Che ML; Chen BZ; Wang Y; Guo XY Ying Yong Sheng Tai Xue Bao; 2014 Jan; 25(1):263-71. PubMed ID: 24765870 [TBL] [Abstract][Full Text] [Related]
14. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China. Yu H; Bian Z; Mu S; Yuan J; Chen F Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32640654 [TBL] [Abstract][Full Text] [Related]
15. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2. Rezende LF; Arenque BC; Aidar ST; Moura MS; Von Randow C; Tourigny E; Menezes RS; Ometto JP Int J Biometeorol; 2016 Jul; 60(7):945-55. PubMed ID: 26498437 [TBL] [Abstract][Full Text] [Related]
16. Description of local carbon flux from large scale gridded climate data by a dynamic global vegetation model at variable time steps: Example of Euroflux sites. Wang M; Venevsky S; Wu C; Berdnikov S; Sorokina V; Kulygin V Sci Total Environ; 2021 Feb; 756():143492. PubMed ID: 33302082 [TBL] [Abstract][Full Text] [Related]
17. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Wang X; Ciais P; Wang Y; Zhu D Glob Chang Biol; 2018 Oct; 24(10):4709-4717. PubMed ID: 29851198 [TBL] [Abstract][Full Text] [Related]
18. A Geographic Mosaic of Climate Change Impacts on Terrestrial Vegetation: Which Areas Are Most at Risk? Ackerly DD; Cornwell WK; Weiss SB; Flint LE; Flint AL PLoS One; 2015; 10(6):e0130629. PubMed ID: 26115485 [TBL] [Abstract][Full Text] [Related]
19. Increased crossing of thermal stress thresholds of vegetation under global warming. Li X; Huntingford C; Wang K; Cui J; Xu H; Kan F; Anniwaer N; Yang H; Peñuelas J; Piao S Glob Chang Biol; 2024 Jul; 30(7):e17406. PubMed ID: 38982862 [TBL] [Abstract][Full Text] [Related]
20. Predicting future climate at high spatial and temporal resolution. Maclean IMD Glob Chang Biol; 2020 Feb; 26(2):1003-1011. PubMed ID: 31638296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]