BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35212414)

  • 1. Poly(lactic acid/caprolactone) bilayer membrane blocks bacterial penetration.
    L Abe G; Tsuboi R; Kitagawa H; Sasaki JI; Li A; Kohno T; Imazato S
    J Periodontal Res; 2022 Jun; 57(3):510-518. PubMed ID: 35212414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function.
    Abe GL; Sasaki JI; Tsuboi R; Kohno T; Kitagawa H; Imazato S
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35365. PubMed ID: 38247248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application.
    Abe GL; Sasaki JI; Katata C; Kohno T; Tsuboi R; Kitagawa H; Imazato S
    Dent Mater; 2020 May; 36(5):626-634. PubMed ID: 32224061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resorbable bilayer membrane made of L-lactide-ε-caprolactone in guided bone regeneration: an in vivo experimental study.
    Watanabe T; Hasuike A; Wakuda S; Kogure K; Min S; Watanabe N; Sakai R; Chaurasia A; Arai Y; Sato S
    Int J Implant Dent; 2024 Jan; 10(1):1. PubMed ID: 38270674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: an experimental study in the dog.
    Matsumoto G; Hoshino J; Kinoshita Y; Sugita Y; Kubo K; Maeda H; Ikada Y; Kinoshita Y
    J Biomater Appl; 2012 Nov; 27(4):485-93. PubMed ID: 22071349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria.
    Saarani NN; Jamuna-Thevi K; Shahab N; Hermawan H; Saidin S
    Dent Mater J; 2017 May; 36(3):260-265. PubMed ID: 28111388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility improvement and controlled in vitro degradation of poly (lactic acid)-b-poly(lactide-co-caprolactone) by formation of highly oriented structure for orthopedic application.
    Wang W; Liu Y; Ye L; Coates P; Caton-Rose F; Zhao X
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2480-2493. PubMed ID: 35674722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Antibacterial Effect of Silver Nanoparticles on Guided Tissue Regeneration Membrane Colonization--An in Vitro Study.
    Rani S; Chandra RV; Reddy AA; Reddy BH; Nagarajan S; Naveen A
    J Int Acad Periodontol; 2015 Jul; 17(3):66-76. PubMed ID: 26373223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of membranes for regenerative procedures against oral bacteria.
    Gil ACK; Prado MM; Rocha LRD; Benfatti C; Schuldt Filho G; Almeida J
    Braz Dent J; 2023; 34(3):57-65. PubMed ID: 37466526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeability of Streptococcus mutans and Actinobacillus actinomycetemcomitans Through guided tissue regeneration membranes and their effects on attachment of periodontal ligament cells.
    Hung SL; Lin YW; Wang YH; Chen YT; Su CY; Ling LJ
    J Periodontol; 2002 Aug; 73(8):843-51. PubMed ID: 12211492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of layered PLGA membranes for periodontal tissue regeneration.
    Yoshimoto I; Sasaki JI; Tsuboi R; Yamaguchi S; Kitagawa H; Imazato S
    Dent Mater; 2018 Mar; 34(3):538-550. PubMed ID: 29310906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability of P. gingivalis or its metabolic products through collagen and dPTFE membranes and their effects on the viability of osteoblast-like cells: an in vitro study.
    Nocca G; Filetici P; Bugli F; Mordente A; D'Addona A; Dassatti L
    Odontology; 2022 Oct; 110(4):710-718. PubMed ID: 35355145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment.
    Takallu S; Mirzaei E; Zakeri Bazmandeh A; Ghaderi Jafarbeigloo HR; Khorshidi H
    ACS Infect Dis; 2024 Mar; 10(3):779-807. PubMed ID: 38300991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial adhesion to antibiotic-loaded guided tissue regeneration membranes - a scanning electron microscopy study.
    Cheng CF; Wu KM; Chen YT; Hung SL
    J Formos Med Assoc; 2015 Jan; 114(1):35-45. PubMed ID: 23969040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'.
    Castillo-Dalí G; Castillo-Oyagüe R; Terriza A; Saffar JL; Batista-Cruzado A; Lynch CD; Sloan AJ; Gutiérrez-Pérez JL; Torres-Lagares D
    J Dent; 2016 Apr; 47():71-9. PubMed ID: 26850906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites.
    Kikuchi M; Koyama Y; Yamada T; Imamura Y; Okada T; Shirahama N; Akita K; Takakuda K; Tanaka J
    Biomaterials; 2004 Dec; 25(28):5979-86. PubMed ID: 15183612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of novel nanofibrous biopolymer membrane for guided bone regeneration within rat mandibular defect.
    Kim JH; Kim MK; Park JH; Won JE; Kim TH; Kim HW
    In Vivo; 2011; 25(4):589-95. PubMed ID: 21709001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of a novel membrane comprising a copolymer of L-lactic acid and glycolic acid in osteoblasts in vitro.
    Kuwahara H; Tachikawa N; Kon K; Kasugai S
    Dent Mater J; 2021 Sep; 40(5):1196-1201. PubMed ID: 34024884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of electrospun core/shell poly(vinyl pyrrolidone)/poly(L-lactide-co-epsilon-caprolactone) fibrous membranes and their cytocompatibility in vitro.
    Li S; Sun B; Li X; Yuan X
    J Biomater Sci Polym Ed; 2008; 19(2):245-58. PubMed ID: 18237495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.