These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 35212488)

  • 1. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications.
    Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J
    Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging Materials and Strategies for Passive Daytime Radiative Cooling.
    Gao W; Chen Y
    Small; 2023 May; 19(18):e2206145. PubMed ID: 36604963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling.
    Woo HY; Choi Y; Chung H; Lee DW; Paik T
    Nano Converg; 2023 Apr; 10(1):17. PubMed ID: 37071232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling.
    Chen M; Pang D; Mandal J; Chen X; Yan H; He Y; Yu N; Yang Y
    Nano Lett; 2021 Feb; 21(3):1412-1418. PubMed ID: 33524258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecularly Connected Armor-like Nanostructure Enables Mechanically Robust Radiative Cooling Materials.
    Zhou P; Wang Y; Zhang X
    Nano Lett; 2024 May; 24(21):6395-6402. PubMed ID: 38757657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Versatile Strategy for Concurrent Passive Daytime Radiative Cooling and Sustainable Energy Harvesting.
    Wang S; Wu Y; Pu M; Xu M; Zhang R; Yu T; Li X; Ma X; Su Y; Tai H; Guo Y; Luo X
    Small; 2024 Feb; 20(6):e2305706. PubMed ID: 37788906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling.
    Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Switchable Passive Daytime Radiative Cooling Coatings.
    Wang T; Xiao Y; King JL; Kats MA; Stebe KJ; Lee D
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48716-48724. PubMed ID: 37812501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Passive Daytime Radiative Cooling by Hierarchically Designed Films Integrating Robust Durability.
    Zhang L; Zhan H; Xia Y; Zhang R; Xue J; Yong J; Zhao L; Liu Y; Feng S
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31994-32001. PubMed ID: 37347225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-Environmental Aging Passive Daytime Radiative Cooling.
    Song J; Shen Q; Shao H; Deng X
    Adv Sci (Weinh); 2024 Mar; 11(10):e2305664. PubMed ID: 38148594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic stereocomplex-type polylactide/ultra-fine glass fibers aerogel for passive daytime radiative cooling.
    Liao S; Bai D; Jia Y; Sun J; Liu H; Li L; Xu M
    Int J Biol Macromol; 2024 Jun; 274(Pt 2):133470. PubMed ID: 38942401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures.
    Park C; Park C; Park S; Lee J; Choi JH; Kim YS; Yoo Y
    ChemSusChem; 2022 Dec; 15(24):e202201842. PubMed ID: 36269116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable cellulose foams for all-weather high-performance radiative cooling and building insulation.
    Bai Y; Jia X; Shan Z; Huang C; Wang D; Yang J; Pang B; Song H
    Carbohydr Polym; 2024 Jun; 333():121951. PubMed ID: 38494216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic structures in radiative cooling.
    Lee M; Kim G; Jung Y; Pyun KR; Lee J; Kim BW; Ko SH
    Light Sci Appl; 2023 Jun; 12(1):134. PubMed ID: 37264035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling.
    Xue X; Qiu M; Li Y; Zhang QM; Li S; Yang Z; Feng C; Zhang W; Dai JG; Lei D; Jin W; Xu L; Zhang T; Qin J; Wang H; Fan S
    Adv Mater; 2020 Oct; 32(42):e1906751. PubMed ID: 32924184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure Design of Polymer-Based Films for Passive Daytime Radiative Cooling.
    Du M; Huang M; Yu X; Ren X; Sun Q
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling.
    Zhou K; Li W; Patel BB; Tao R; Chang Y; Fan S; Diao Y; Cai L
    Nano Lett; 2021 Feb; 21(3):1493-1499. PubMed ID: 33464912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO
    Han D; Wang C; Han CB; Cui Y; Ren WR; Zhao WK; Jiang Q; Yan H
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9303-9312. PubMed ID: 38343044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.