These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35212565)

  • 1. Drivers' Performance in Non-critical Take-Overs From an Automated Driving System-An On-Road Study.
    Rydström A; Mullaart MS; Novakazi F; Johansson M; Eriksson A
    Hum Factors; 2023 Dec; 65(8):1841-1857. PubMed ID: 35212565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drivers' gaze patterns when resuming control with a head-up-display: Effects of automation level and time budget.
    Xu C; Louw TL; Merat N; Li P; Hu M; Li Y
    Accid Anal Prev; 2023 Feb; 180():106905. PubMed ID: 36508949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated conditionally automated driving on the road: How do drivers leave the loop over time?
    Dillmann J; Den Hartigh RJR; Kurpiers CM; Raisch FK; Kadrileev N; Cox RFA; De Waard D
    Accid Anal Prev; 2023 Mar; 181():106927. PubMed ID: 36584619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driver-initiated take-overs during critical braking maneuvers in automated driving - The role of time headway, traction usage, and trust in automation.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2022 Sep; 174():106725. PubMed ID: 35878555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver Visual Attention Before and After Take-Over Requests During Automated Driving on Public Roads.
    Pipkorn L; Dozza M; Tivesten E
    Hum Factors; 2024 Feb; 66(2):336-347. PubMed ID: 35708240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driver-initiated take-overs during critical evasion maneuvers in automated driving.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2024 Jan; 194():107362. PubMed ID: 37931430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Get Ready for Take-Overs: Using Head-Up Display for Drivers to Engage in Non-Driving-Related Tasks in Automated Vehicles.
    Li X; Schroeter R; Rakotonirainy A; Kuo J; Lenné MG
    Hum Factors; 2023 Dec; 65(8):1759-1775. PubMed ID: 34865560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of cooperative human-machine interface for changing lanes in conditional driving automation.
    Muslim H; Kiu Leung C; Itoh M
    Accid Anal Prev; 2022 Sep; 174():106719. PubMed ID: 35660872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What happens when drivers of automated vehicles take over control in critical brake situations?
    Roche F; Thüring M; Trukenbrod AK
    Accid Anal Prev; 2020 Sep; 144():105588. PubMed ID: 32531374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of non-driving related tasks while operating automated driving systems (ADS): A systematic review.
    Hungund AP; Kumar Pradhan A
    Accid Anal Prev; 2023 Aug; 188():107076. PubMed ID: 37150132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keeping the driver in the loop through semi-automated or manual lane changes in conditionally automated driving.
    Dillmann J; den Hartigh RJR; Kurpiers CM; Pelzer J; Raisch FK; Cox RFA; de Waard D
    Accid Anal Prev; 2021 Nov; 162():106397. PubMed ID: 34563644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding take-over performance of high crash risk drivers during conditionally automated driving.
    Lin Q; Li S; Ma X; Lu G
    Accid Anal Prev; 2020 Aug; 143():105543. PubMed ID: 32485431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of unreliable automation, non-driving related task, and takeover time budget on drivers' takeover performance and workload.
    Shahini F; Park J; Welch K; Zahabi M
    Ergonomics; 2023 Feb; 66(2):182-197. PubMed ID: 35451915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driver-Automated Vehicle Interaction in Mixed Traffic: Types of Interaction and Drivers' Driving Styles.
    Ma Z; Zhang Y
    Hum Factors; 2024 Feb; 66(2):544-561. PubMed ID: 35469464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of motor control requirements on drivers' eye-gaze pattern during automated driving.
    Goncalves RC; Louw TL; Quaresma M; Madigan R; Merat N
    Accid Anal Prev; 2020 Dec; 148():105788. PubMed ID: 33039820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of Trust in Automated Driving: A Matter of Initial Level of Trust and Automated Driving Style?
    Manchon JB; Bueno M; Navarro J
    Hum Factors; 2023 Dec; 65(8):1613-1629. PubMed ID: 34861787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of varying levels of vehicle automation on drivers' lane changing behaviour.
    Madigan R; Louw T; Merat N
    PLoS One; 2018; 13(2):e0192190. PubMed ID: 29466402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non-Driving Related Tasks on Takeover Time and Takeover Quality.
    Naujoks F; Purucker C; Wiedemann K; Marberger C
    Hum Factors; 2019 Jun; 61(4):596-613. PubMed ID: 30689440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driver response and recovery following automation initiated disengagement in real-world hands-free driving.
    Gershon P; Mehler B; Reimer B
    Traffic Inj Prev; 2023; 24(4):356-361. PubMed ID: 36988583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.