These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35212581)

  • 1. Establishing an air-liquid interface exposure system for exposure of lung cells to gases.
    Guénette J; Breznan D; Thomson EM
    Inhal Toxicol; 2022; 34(3-4):80-89. PubMed ID: 35212581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro exposure of isolated cells to native gaseous compounds--development and validation of an optimized system for human lung cells.
    Ritter D; Knebel JW; Aufderheide M
    Exp Toxicol Pathol; 2001 Oct; 53(5):373-86. PubMed ID: 11817107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative anti-inflammatory effect of curcumin at air-liquid interface and submerged conditions using lipopolysaccharide stimulated human lung epithelial A549 cells.
    Hu Y; Sheng Y; Ji X; Liu P; Tang L; Chen G; Chen G
    Pulm Pharmacol Ther; 2020 Aug; 63():101939. PubMed ID: 32861762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution.
    Zavala J; O'Brien B; Lichtveld K; Sexton KG; Rusyn I; Jaspers I; Vizuete W
    Inhal Toxicol; 2016; 28(6):251-9. PubMed ID: 27100558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.
    Latvala S; Hedberg J; Möller L; Odnevall Wallinder I; Karlsson HL; Elihn K
    J Appl Toxicol; 2016 Oct; 36(10):1294-301. PubMed ID: 26935862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acute in vitro exposure of murine precision-cut lung slices to gaseous nitrogen dioxide and ozone in an air-liquid interface (ALI) culture.
    Switalla S; Knebel J; Ritter D; Krug N; Braun A; Sewald K
    Toxicol Lett; 2010 Jul; 196(2):117-24. PubMed ID: 20394810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in cytotoxicity of lung epithelial cells exposed to titanium dioxide nanofibers and nanoparticles: Comparison of air-liquid interface and submerged cell cultures.
    Medina-Reyes EI; Delgado-Buenrostro NL; Leseman DL; Déciga-Alcaraz A; He R; Gremmer ER; Fokkens PHB; Flores-Flores JO; Cassee FR; Chirino YI
    Toxicol In Vitro; 2020 Jun; 65():104798. PubMed ID: 32084520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems.
    Ding Y; Weindl P; Lenz AG; Mayer P; Krebs T; Schmid O
    Part Fibre Toxicol; 2020 Sep; 17(1):44. PubMed ID: 32938469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of biological responses between submerged, pseudo-air-liquid interface, and air-liquid interface exposure of A549 and differentiated THP-1 co-cultures to combustion-derived particles.
    Kaur K; Mohammadpour R; Sturrock A; Ghandehari H; Reilly C; Paine R; Kelly KE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(7):540-551. PubMed ID: 35722658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the CULTEX(®) radial flow system for in vitro investigation of lung damaging agents.
    Tsoutsoulopoulos A; Möhle N; Aufderheide M; Schmidt A; Thiermann H; Steinritz D
    Toxicol Lett; 2016 Feb; 244():28-34. PubMed ID: 26358518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel exposure system generating nebulized aerosol of sulfur mustard in comparison to the standard submerse exposure.
    Tsoutsoulopoulos A; Siegert M; John H; Zubel T; Mangerich A; Schmidt A; Mückter H; Gudermann T; Thiermann H; Steinritz D; Popp T
    Chem Biol Interact; 2019 Jan; 298():121-128. PubMed ID: 30502332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alveolar epithelial cells (A549) exposed at the air-liquid interface to diesel exhaust: First study in TNO's powertrain test center.
    Kooter IM; Alblas MJ; Jedynska AD; Steenhof M; Houtzager MM; van Ras M
    Toxicol In Vitro; 2013 Dec; 27(8):2342-9. PubMed ID: 24161370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-laboratory variability of A549 epithelial cells grown under submerged and air-liquid interface conditions.
    Barosova H; Meldrum K; Karakocak BB; Balog S; Doak SH; Petri-Fink A; Clift MJD; Rothen-Rutishauser B
    Toxicol In Vitro; 2021 Sep; 75():105178. PubMed ID: 33905840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system.
    He RW; Houtzager MMG; Jongeneel WP; Westerink RHS; Cassee FR
    Environ Int; 2021 Nov; 156():106718. PubMed ID: 34166876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Condensational particle growth device for reliable cell exposure at the air-liquid interface to nanoparticles.
    Tilly TB; Ward RX; Luthra JK; Robinson S; Eiguren-Fernandez A; Lewis GS; Salisbury RL; Lednicky JA; Sabo-Attwood TL; Hussain SM; Wu CY
    Aerosol Sci Technol; 2019; 53(12):1415-1428. PubMed ID: 33033421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives.
    Cao X; Coyle JP; Xiong R; Wang Y; Heflich RH; Ren B; Gwinn WM; Hayden P; Rojanasakul L
    In Vitro Cell Dev Biol Anim; 2021 Feb; 57(2):104-132. PubMed ID: 33175307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke.
    Ihantola T; Di Bucchianico S; Happo M; Ihalainen M; Uski O; Bauer S; Kuuspalo K; Sippula O; Tissari J; Oeder S; Hartikainen A; Rönkkö TJ; Martikainen MV; Huttunen K; Vartiainen P; Suhonen H; Kortelainen M; Lamberg H; Leskinen A; Sklorz M; Michalke B; Dilger M; Weiss C; Dittmar G; Beckers J; Irmler M; Buters J; Candeias J; Czech H; Yli-Pirilä P; Abbaszade G; Jakobi G; Orasche J; Schnelle-Kreis J; Kanashova T; Karg E; Streibel T; Passig J; Hakkarainen H; Jokiniemi J; Zimmermann R; Hirvonen MR; Jalava PI
    Part Fibre Toxicol; 2020 Jun; 17(1):27. PubMed ID: 32539833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions.
    Friesen A; Fritsch-Decker S; Hufnagel M; Mülhopt S; Stapf D; Hartwig A; Weiss C
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Expression Profiling of Mono- and Co-Culture Models of the Respiratory Tract Exposed to Crystalline Quartz under Submerged and Air-Liquid Interface Conditions.
    Friesen A; Fritsch-Decker S; Hufnagel M; Mülhopt S; Stapf D; Weiss C; Hartwig A
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biokinetics of Aerosolized Liposomal Ciclosporin A in Human Lung Cells In Vitro Using an Air-Liquid Cell Interface Exposure System.
    Schmid O; Jud C; Umehara Y; Mueller D; Bucholski A; Gruber F; Denk O; Egle R; Petri-Fink A; Rothen-Rutishauser B
    J Aerosol Med Pulm Drug Deliv; 2017 Dec; 30(6):411-424. PubMed ID: 28683218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.