BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35212596)

  • 1. A review of wound dressing materials and its fabrication methods: emphasis on three-dimensional printed dressings.
    Kumar SP; Asokan Y; Balamurugan K; Harsha B
    J Med Eng Technol; 2022 May; 46(4):318-334. PubMed ID: 35212596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review.
    Sadeghianmaryan A; Ahmadian N; Wheatley S; Alizadeh Sardroud H; Nasrollah SAS; Naseri E; Ahmadi A
    Int J Biol Macromol; 2024 May; 266(Pt 1):131207. PubMed ID: 38552687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing.
    Tan SH; Ngo ZH; Sci DB; Leavesley D; Liang K
    Tissue Eng Part B Rev; 2022 Feb; 28(1):160-181. PubMed ID: 33446047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thread Size and Polymer Composition of 3D Printed and Electrospun Wound Dressings Affect Wound Healing Outcomes in an Excisional Wound Rat Model.
    Nun N; Cruz M; Jain T; Tseng YM; Menefee J; Jatana S; Patil PS; Leipzig ND; McDonald C; Maytin E; Joy A
    Biomacromolecules; 2020 Oct; 21(10):4030-4042. PubMed ID: 32902971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenically printed flexible chitosan/bioglass scaffolds with stable and hierarchical porous structures for wound healing.
    Wu C; Yu Z; Li Y; Zhou K; Cao C; Zhang P; Li W
    Biomed Mater; 2020 Nov; 16(1):015004. PubMed ID: 33245049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Mediated 3D Printing of Micro-Pyramid-Decorated Tailorable Wound Dressings with Endogenous Growth Factor Sequestration for Improved Wound Healing.
    Joshi A; Kaur T; Joshi A; Gugulothu SB; Choudhury S; Singh N
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):327-337. PubMed ID: 36562761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements.
    Pita-Vilar M; Concheiro A; Alvarez-Lorenzo C; Diaz-Gomez L
    Carbohydr Polym; 2023 Dec; 321():121298. PubMed ID: 37739531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional 3D printed porous GelMA/xanthan gum based dressing with biofilm control and wound healing activity.
    Yang Z; Ren X; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112493. PubMed ID: 34857279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart 3D Printed Auxetic Hydrogel Skin Wound Dressings.
    Tsegay F; Elsherif M; Alam F; Butt H
    ACS Appl Bio Mater; 2022 Dec; 5(12):5545-5553. PubMed ID: 36441920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wound Healing: From Passive to Smart Dressings.
    Farahani M; Shafiee A
    Adv Healthc Mater; 2021 Aug; 10(16):e2100477. PubMed ID: 34174163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt-mediated multi-functional dressings promote bacteria-infected wound healing.
    Shi Q; Luo X; Huang Z; Midgley AC; Wang B; Liu R; Zhi D; Wei T; Zhou X; Qiao M; Zhang J; Kong D; Wang K
    Acta Biomater; 2019 Mar; 86():465-479. PubMed ID: 30599244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material.
    Ilhan E; Cesur S; Guler E; Topal F; Albayrak D; Guncu MM; Cam ME; Taskin T; Sasmazel HT; Aksu B; Oktar FN; Gunduz O
    Int J Biol Macromol; 2020 Oct; 161():1040-1054. PubMed ID: 32544577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds.
    Awasthi A; Gulati M; Kumar B; Kaur J; Vishwas S; Khursheed R; Porwal O; Alam A; Kr A; Corrie L; Kumar R; Kumar A; Kaushik M; Jha NK; Gupta PK; Chellappan DK; Gupta G; Dua K; Gupta S; Gundamaraju R; Rao PV; Singh SK
    Biomed Res Int; 2022; 2022():1659338. PubMed ID: 35832856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensionally Printed Silk-Sericin-Based Hydrogel Scaffold: A Promising Visualized Dressing Material for Real-Time Monitoring of Wounds.
    Chen CS; Zeng F; Xiao X; Wang Z; Li XL; Tan RW; Liu WQ; Zhang YS; She ZD; Li SJ
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33879-33890. PubMed ID: 30204403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting: opportunities for wound dressing development.
    Wang X; Wang Y; Teng Y; Shi J; Yang X; Ding Z; Guo X; Hou S; Lv Q
    Biomed Mater; 2023 Jul; 18(5):. PubMed ID: 37369219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of an electrospun and 3D printed cellular delivery device for dermal wound healing.
    Clohessy RM; Cohen DJ; Stumbraite K; Boyan BD; Schwartz Z
    J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2560-2570. PubMed ID: 32086992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research status of self-healing hydrogel for wound management: A review.
    Zhang A; Liu Y; Qin D; Sun M; Wang T; Chen X
    Int J Biol Macromol; 2020 Dec; 164():2108-2123. PubMed ID: 32798548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed electrospun fibres for wound healing.
    Ye X; Zhang E; Huang Y; Tian F; Xue J
    Wound Repair Regen; 2024; 32(3):195-207. PubMed ID: 37753874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesive, Flexible, and Fast Degradable 3D-Printed Wound Dressings with a Simple Composition.
    Hu Y; Tang H; Xu N; Kang X; Wu W; Shen C; Lin J; Bao Y; Jiang X; Luo Z
    Adv Healthc Mater; 2024 Jan; 13(3):e2302063. PubMed ID: 37916920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.