These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35212698)

  • 1. Nanocomposite tectons as unifying systems for nanoparticle assembly.
    Xia J; Lee M; Santos PJ; Horst N; Macfarlane RJ; Guo H; Travesset A
    Soft Matter; 2022 Mar; 18(11):2176-2192. PubMed ID: 35212698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistimuli Responsive Nanocomposite Tectons for Pathway Dependent Self-Assembly and Acceleration of Covalent Bond Formation.
    Wang Y; Santos PJ; Kubiak JM; Guo X; Lee MS; Macfarlane RJ
    J Am Chem Soc; 2019 Aug; 141(33):13234-13243. PubMed ID: 31357862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembling Nanocomposite Tectons.
    Zhang J; Santos PJ; Gabrys PA; Lee S; Liu C; Macfarlane RJ
    J Am Chem Soc; 2016 Dec; 138(50):16228-16231. PubMed ID: 27935680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Diffusionless Phase Transitions in 3D Nanoparticle Superlattices.
    Yee DW; Lee MS; An J; Macfarlane RJ
    J Am Chem Soc; 2023 Mar; 145(11):6051-6056. PubMed ID: 36898204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembling Ordered Crystals with Disperse Building Blocks.
    Santos PJ; Cheung TC; Macfarlane RJ
    Nano Lett; 2019 Aug; 19(8):5774-5780. PubMed ID: 31348659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle assembly modulated by polymer chain conformation in composite materials.
    Chen S; Olson E; Jiang S; Yong X
    Nanoscale; 2020 Jul; 12(27):14560-14572. PubMed ID: 32613987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle superlattice engineering with DNA.
    Macfarlane RJ; Lee B; Jones MR; Harris N; Schatz GC; Mirkin CA
    Science; 2011 Oct; 334(6053):204-8. PubMed ID: 21998382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle Assembly in High Polymer Concentration Solutions Increases Superlattice Stability.
    Lee MS; Alexander-Katz A; Macfarlane RJ
    Small; 2021 Sep; 17(36):e2102107. PubMed ID: 34319651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics.
    Yu Q; Hu J; Hu Y; Wang R
    Soft Matter; 2018 Apr; 14(14):2665-2670. PubMed ID: 29561032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion.
    Wang MX; Brodin JD; Millan JA; Seo SE; Girard M; Olvera de la Cruz M; Lee B; Mirkin CA
    Nano Lett; 2017 Aug; 17(8):5126-5132. PubMed ID: 28731353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent vapor annealing in block copolymer nanocomposite films: a dynamic mean field approach.
    Chao H; Koski J; Riggleman RA
    Soft Matter; 2016 Dec; 13(1):239-249. PubMed ID: 27320693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.
    Yu Q; Zhang X; Hu Y; Zhang Z; Wang R
    ACS Nano; 2016 Aug; 10(8):7485-92. PubMed ID: 27409362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversifying Nanoparticle Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement.
    Bai P; Yang S; Bao W; Kao J; Thorkelsson K; Salmeron M; Zhang X; Xu T
    Nano Lett; 2017 Nov; 17(11):6847-6854. PubMed ID: 28968125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Polymerization-like Kinetics for Programmable Self-Assembly of DNA-Encoded Nanoparticles with Limited Valence.
    Gu M; Ma X; Zhang L; Lin J
    J Am Chem Soc; 2019 Oct; 141(41):16408-16415. PubMed ID: 31553167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy-Driven Crystallization Behavior in DNA-Mediated Nanoparticle Assembly.
    Thaner RV; Kim Y; Li TI; Macfarlane RJ; Nguyen ST; Olvera de la Cruz M; Mirkin CA
    Nano Lett; 2015 Aug; 15(8):5545-51. PubMed ID: 26126166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.
    Wang D; Kou R; Choi D; Yang Z; Nie Z; Li J; Saraf LV; Hu D; Zhang J; Graff GL; Liu J; Pope MA; Aksay IA
    ACS Nano; 2010 Mar; 4(3):1587-95. PubMed ID: 20184383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the dynamic and thermodynamic properties of hybridization in DNA-mediated nanoparticle self-assembly.
    Yu Q; Shi D; Dong W; Chen M
    Phys Chem Chem Phys; 2021 May; 23(20):11774-11783. PubMed ID: 33982700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of Ultrathin Gold Nanowires: From Polymer Analogue to Colloidal Block.
    Chen Y; Wang Y; Peng J; Xu Q; Weng J; Xu J
    ACS Nano; 2017 Mar; 11(3):2756-2763. PubMed ID: 28263571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.