BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35213009)

  • 1. Design of Bifunctional Antisense Oligonucleotides for Exon Inclusion.
    Zhou H
    Methods Mol Biol; 2022; 2434():53-62. PubMed ID: 35213009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design principles for bifunctional targeted oligonucleotide enhancers of splicing.
    Owen N; Zhou H; Malygin AA; Sangha J; Smith LD; Muntoni F; Eperon IC
    Nucleic Acids Res; 2011 Sep; 39(16):7194-208. PubMed ID: 21602265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redirecting splicing with bifunctional oligonucleotides.
    Brosseau JP; Lucier JF; Lamarche AA; Shkreta L; Gendron D; Lapointe E; Thibault P; Paquet E; Perreault JP; Abou Elela S; Chabot B
    Nucleic Acids Res; 2014 Apr; 42(6):e40. PubMed ID: 24375754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolving concepts on human SMN pre-mRNA splicing.
    Singh RN
    RNA Biol; 2007; 4(1):7-10. PubMed ID: 17592254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Exon Inclusion Induced by Splice Switching Antisense Oligonucleotides in SMA Patient Fibroblasts.
    Maruyama R; Touznik A; Yokota T
    J Vis Exp; 2018 May; (135):. PubMed ID: 29806836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense Oligonucleotide Induction of the hnRNPA1b Isoform Affects Pre-mRNA Splicing of
    Toosaranont J; Ruschadaariyachat S; Mujchariyakul W; Arora JK; Charoensawan V; Suktitipat B; Palmer TN; Fletcher S; Wilton SD; Mitrpant C
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense oligonucleotide-mediated exon skipping of CHRNA1 pre-mRNA as potential therapy for Congenital Myasthenic Syndromes.
    Tei S; Ishii HT; Mitsuhashi H; Ishiura S
    Biochem Biophys Res Commun; 2015 Jun; 461(3):481-6. PubMed ID: 25888793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.
    Singh NK; Singh NN; Androphy EJ; Singh RN
    Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense-mediated exon inclusion.
    Hua Y; Krainer AR
    Methods Mol Biol; 2012; 867():307-23. PubMed ID: 22454070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA.
    Ittig D; Liu S; Renneberg D; Schümperli D; Leumann CJ
    Nucleic Acids Res; 2004; 32(1):346-53. PubMed ID: 14726483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs.
    Madocsai C; Lim SR; Geib T; Lam BJ; Hertel KJ
    Mol Ther; 2005 Dec; 12(6):1013-22. PubMed ID: 16226920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs.
    Blázquez L; Aiastui A; Goicoechea M; Martins de Araujo M; Avril A; Beley C; García L; Valcárcel J; Fortes P; López de Munain A
    Hum Mutat; 2013 Oct; 34(10):1387-95. PubMed ID: 23864287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes.
    Singh NN; Seo J; Rahn SJ; Singh RN
    PLoS One; 2012; 7(11):e49595. PubMed ID: 23185376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3' splice site pairing.
    Lim SR; Hertel KJ
    J Biol Chem; 2001 Nov; 276(48):45476-83. PubMed ID: 11584013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52.
    Cale JM; Greer K; Fletcher S; Wilton SD
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice.
    Hua Y; Vickers TA; Okunola HL; Bennett CF; Krainer AR
    Am J Hum Genet; 2008 Apr; 82(4):834-48. PubMed ID: 18371932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.