BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35213015)

  • 1. Development and Use of Cellular Systems to Assess and Correct Splicing Defects.
    Suárez-Herrera N; Tomkiewicz TZ; Garanto A; Collin RWJ
    Methods Mol Biol; 2022; 2434():145-165. PubMed ID: 35213015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense Oligonucleotide-Based Rescue of Aberrant Splicing Defects Caused by 15 Pathogenic Variants in
    Tomkiewicz TZ; Suárez-Herrera N; Cremers FPM; Collin RWJ; Garanto A
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and In Vitro Use of Antisense Oligonucleotides to Correct Pre-mRNA Splicing Defects in Inherited Retinal Dystrophies.
    Garanto A; Collin RWJ
    Methods Mol Biol; 2018; 1715():61-78. PubMed ID: 29188506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense Oligonucleotide-Based Rescue of Complex Intronic Splicing Defects in
    Corradi Z; Hitti-Malin RJ; de Rooij LA; Garanto A; Collin RWJ; Cremers FPM
    Nucleic Acid Ther; 2024; 34(3):125-133. PubMed ID: 38800942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.
    Sangermano R; Garanto A; Khan M; Runhart EH; Bauwens M; Bax NM; van den Born LI; Khan MI; Cornelis SS; Verheij JBGM; Pott JR; Thiadens AAHJ; Klaver CCW; Puech B; Meunier I; Naessens S; Arno G; Fakin A; Carss KJ; Raymond FL; Webster AR; Dhaenens CM; Stöhr H; Grassmann F; Weber BHF; Hoyng CB; De Baere E; Albert S; Collin RWJ; Cremers FPM
    Genet Med; 2019 Aug; 21(8):1751-1760. PubMed ID: 30643219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs.
    Blázquez L; Aiastui A; Goicoechea M; Martins de Araujo M; Avril A; Beley C; García L; Valcárcel J; Fortes P; López de Munain A
    Hum Mutat; 2013 Oct; 34(10):1387-95. PubMed ID: 23864287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the 6-Pyruvoyl-Tetrahydropterin Synthase Gene.
    Martínez-Pizarro A; Leal F; Holm LL; Doktor TK; Petersen USS; Bueno M; Thöny B; Pérez B; Andresen BS; Desviat LR
    Nucleic Acid Ther; 2022 Oct; 32(5):378-390. PubMed ID: 35833796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides.
    Wilton SD; Lloyd F; Carville K; Fletcher S; Honeyman K; Agrawal S; Kole R
    Neuromuscul Disord; 1999 Jul; 9(5):330-8. PubMed ID: 10407856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Bifunctional Antisense Oligonucleotides for Exon Inclusion.
    Zhou H
    Methods Mol Biol; 2022; 2434():53-62. PubMed ID: 35213009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.
    Gerard X; Garanto A; Rozet JM; Collin RW
    Adv Exp Med Biol; 2016; 854():517-24. PubMed ID: 26427454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays.
    Graham IR; Hill VJ; Manoharan M; Inamati GB; Dickson G
    J Gene Med; 2004 Oct; 6(10):1149-58. PubMed ID: 15386737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of aberrant splicing in growth hormone receptor by antisense oligonucleotides targeting the splice sites of a pseudoexon.
    David A; Srirangalingam U; Metherell LA; Khoo B; Clark AJ
    J Clin Endocrinol Metab; 2010 Jul; 95(7):3542-6. PubMed ID: 20427506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy.
    Rimessi P; Fabris M; Bovolenta M; Bassi E; Falzarano S; Gualandi F; Rapezzi C; Coccolo F; Perrone D; Medici A; Ferlini A
    Hum Gene Ther; 2010 Sep; 21(9):1137-46. PubMed ID: 20486769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense Oligonucleotide Screening to Optimize the Rescue of the Splicing Defect Caused by the Recurrent Deep-Intronic
    Garanto A; Duijkers L; Tomkiewicz TZ; Collin RWJ
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31197102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.
    Igreja S; Clarke LA; Botelho HM; Marques L; Amaral MD
    Hum Mutat; 2016 Feb; 37(2):209-15. PubMed ID: 26553470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression.
    Lee JJA; Saito T; Duddy W; Takeda S; Yokota T
    Methods Mol Biol; 2018; 1828():141-150. PubMed ID: 30171539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52.
    Cale JM; Greer K; Fletcher S; Wilton SD
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Alternative Splicing for Therapeutic Interventions.
    Centa JL; Hastings ML
    Methods Mol Biol; 2022; 2537():21-36. PubMed ID: 35895256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.