These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35213015)

  • 41. Induced dystrophin exon skipping in human muscle explants.
    McClorey G; Fall AM; Moulton HM; Iversen PL; Rasko JE; Ryan M; Fletcher S; Wilton SD
    Neuromuscul Disord; 2006 Oct; 16(9-10):583-90. PubMed ID: 16919955
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antisense oligonucleotide-mediated exon skipping of CHRNA1 pre-mRNA as potential therapy for Congenital Myasthenic Syndromes.
    Tei S; Ishii HT; Mitsuhashi H; Ishiura S
    Biochem Biophys Res Commun; 2015 Jun; 461(3):481-6. PubMed ID: 25888793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antisense-mediated exon skipping to reframe transcripts.
    Turczynski S; Titeux M; Pironon N; Hovnanian A
    Methods Mol Biol; 2012; 867():221-38. PubMed ID: 22454065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.
    Takeshima Y; Yagi M; Matsuo M
    Methods Mol Biol; 2012; 867():131-41. PubMed ID: 22454059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The therapeutic potential of antisense-mediated exon skipping.
    van Ommen GJ; van Deutekom J; Aartsma-Rus A
    Curr Opin Mol Ther; 2008 Apr; 10(2):140-9. PubMed ID: 18386226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of antisense oligonucleotide length on dystrophin exon skipping.
    Harding PL; Fall AM; Honeyman K; Fletcher S; Wilton SD
    Mol Ther; 2007 Jan; 15(1):157-66. PubMed ID: 17164787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antisense-Mediated Skipping of Dysferlin Exons in Control and Dysferlinopathy Patient-Derived Cells.
    Verwey N; Gazzoli I; Krause S; Mamchaoui K; Mouly V; Aartsma-Rus A
    Nucleic Acid Ther; 2020 Apr; 30(2):71-79. PubMed ID: 31873062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery.
    Garanto A; Chung DC; Duijkers L; Corral-Serrano JC; Messchaert M; Xiao R; Bennett J; Vandenberghe LH; Collin RW
    Hum Mol Genet; 2016 Jun; 25(12):2552-2563. PubMed ID: 27106101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Overview on applications of antisense-mediated exon skipping.
    van Roon-Mom WM; Aartsma-Rus A
    Methods Mol Biol; 2012; 867():79-96. PubMed ID: 22454056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau Pre-mRNA Alternative Splicing.
    Ong AAL; Tan J; Bhadra M; Dezanet C; Patil KM; Chong MS; Kierzek R; Decout JL; Roca X; Chen G
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31434312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In Vitro Multiexon Skipping by Antisense PMOs in Dystrophic Dog and Exon 7-Deleted DMD Patient.
    Nakamura A; Aoki Y; Tsoumpra M; Yokota T; Takeda S
    Methods Mol Biol; 2018; 1828():151-163. PubMed ID: 30171540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides.
    Echigoya Y; Yokota T
    Nucleic Acid Ther; 2014 Feb; 24(1):57-68. PubMed ID: 24380394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antisense oligonucleotide induced dystrophin exon 45 skipping at a low half-maximal effective concentration in a cell-free splicing system.
    Malueka RG; Yagi M; Awano H; Lee T; Dwianingsih EK; Nishida A; Takeshima Y; Matsuo M
    Nucleic Acid Ther; 2011 Oct; 21(5):347-53. PubMed ID: 21967521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA.
    Ittig D; Liu S; Renneberg D; Schümperli D; Leumann CJ
    Nucleic Acids Res; 2004; 32(1):346-53. PubMed ID: 14726483
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping.
    Li D; Mastaglia FL; Fletcher S; Wilton SD
    Trends Pharmacol Sci; 2018 Nov; 39(11):982-994. PubMed ID: 30282590
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript.
    Wilton SD; Fall AM; Harding PL; McClorey G; Coleman C; Fletcher S
    Mol Ther; 2007 Jul; 15(7):1288-96. PubMed ID: 17285139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generation of Humanized Zebrafish Models for the In Vivo Assessment of Antisense Oligonucleotide-Based Splice Modulation Therapies.
    Schellens R; de Vrieze E; Slijkerman R; Kremer H; van Wijk E
    Methods Mol Biol; 2022; 2434():281-299. PubMed ID: 35213025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systematic evaluation of 2'-Fluoro modified chimeric antisense oligonucleotide-mediated exon skipping in vitro.
    Chen S; Le BT; Chakravarthy M; Kosbar TR; Veedu RN
    Sci Rep; 2019 Apr; 9(1):6078. PubMed ID: 30988454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.