These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35213021)

  • 1. Generation of Human iPSC-Derived Myotubes to Investigate RNA-Based Therapies In Vitro.
    Herrero-Hernandez P; Bergsma AJ; Pijnappel WWMP
    Methods Mol Biol; 2022; 2434():235-243. PubMed ID: 35213021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression.
    Lee JJA; Saito T; Duddy W; Takeda S; Yokota T
    Methods Mol Biol; 2018; 1828():141-150. PubMed ID: 30171539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy.
    Koo T; Wood MJ
    Hum Gene Ther; 2013 May; 24(5):479-88. PubMed ID: 23521559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem Cell-Mediated Exon Skipping of the Dystrophin Gene by the Bystander Effect.
    Meregalli M; Farini A; Sitzia C; Beley C; Razini P; Cassinelli L; Colleoni F; Frattini P; Santo N; Galbiati E; Prosperi D; Tavelli A; Belicchi M; Garcia L; Torrente Y
    Curr Gene Ther; 2015; 15(6):563-71. PubMed ID: 26415573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of Antisense Oligonucleotides for the Treatment of Duchenne Muscular Dystrophy.
    Relizani K; Goyenvalle A
    Methods Mol Biol; 2018; 1687():171-183. PubMed ID: 29067663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons.
    Aartsma-Rus A; Kaman WE; Weij R; den Dunnen JT; van Ommen GJ; van Deutekom JC
    Mol Ther; 2006 Sep; 14(3):401-7. PubMed ID: 16753346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Peptides to Improve Delivery and Exon Skipping of Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy.
    Jirka SMG; 't Hoen PAC; Diaz Parillas V; Tanganyika-de Winter CL; Verheul RC; Aguilera B; de Visser PC; Aartsma-Rus AM
    Mol Ther; 2018 Jan; 26(1):132-147. PubMed ID: 29103911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatic and functional optimization of antisense phosphorodiamidate morpholino oligomers (PMOs) for therapeutic modulation of RNA splicing in muscle.
    Popplewell LJ; Graham IR; Malerba A; Dickson G
    Methods Mol Biol; 2011; 709():153-78. PubMed ID: 21194027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic Delivery of Morpholinos to Skip Multiple Exons in a Dog Model of Duchenne Muscular Dystrophy.
    Maruyama R; Echigoya Y; Caluseriu O; Aoki Y; Takeda S; Yokota T
    Methods Mol Biol; 2017; 1565():201-213. PubMed ID: 28364245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Pharmacokinetics of 2'-
    Bosgra S; Sipkens J; de Kimpe S; den Besten C; Datson N; van Deutekom J
    Nucleic Acid Ther; 2019 Dec; 29(6):305-322. PubMed ID: 31429628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense-mediated modulation of splicing: therapeutic implications for Duchenne muscular dystrophy.
    Aartsma-Rus A
    RNA Biol; 2010; 7(4):453-61. PubMed ID: 20523110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAA Deficiency in Pompe Disease Is Alleviated by Exon Inclusion in iPSC-Derived Skeletal Muscle Cells.
    van der Wal E; Bergsma AJ; van Gestel TJM; In 't Groen SLM; Zaehres H; Araúzo-Bravo MJ; Schöler HR; van der Ploeg AT; Pijnappel WWMP
    Mol Ther Nucleic Acids; 2017 Jun; 7():101-115. PubMed ID: 28624186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGFβ-dependent pro-fibrotic signaling.
    Caputo L; Granados A; Lenzi J; Rosa A; Ait-Si-Ali S; Puri PL; Albini S
    Skelet Muscle; 2020 May; 10(1):13. PubMed ID: 32359374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes.
    Carvalho C; Carmo-Fonseca M
    Methods Mol Biol; 2020; 2161():37-50. PubMed ID: 32681504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Multiexon Skipping by Antisense PMOs in Dystrophic Dog and Exon 7-Deleted DMD Patient.
    Nakamura A; Aoki Y; Tsoumpra M; Yokota T; Takeda S
    Methods Mol Biol; 2018; 1828():151-163. PubMed ID: 30171540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.