These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35213533)

  • 1. IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data.
    Heydari T; A Langley M; Fisher CL; Aguilar-Hidalgo D; Shukla S; Yachie-Kinoshita A; Hughes M; M McNagny K; Zandstra PW
    PLoS Comput Biol; 2022 Feb; 18(2):e1009907. PubMed ID: 35213533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring Gene Regulatory Networks and Predicting the Effect of Gene Perturbations via IQCELL.
    Heydari T; Zandstra PW
    Methods Mol Biol; 2024; 2767():251-262. PubMed ID: 36790623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TopoDoE: a design of experiment strategy for selection and refinement in ensembles of executable gene regulatory networks.
    Bouvier M; Zreika S; Vallin E; Fourneaux C; Gonin-Giraud S; Bonnaffoux A; Gandrillon O
    BMC Bioinformatics; 2024 Jul; 25(1):245. PubMed ID: 39030497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.
    Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.
    Kumar N; Mishra B; Athar M; Mukhtar S
    Methods Mol Biol; 2021; 2328():171-182. PubMed ID: 34251625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepDRIM: a deep neural network to reconstruct cell-type-specific gene regulatory network using single-cell RNA-seq data.
    Chen J; Cheong C; Lan L; Zhou X; Liu J; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34424948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks.
    Zinati Y; Takiddeen A; Emad A
    Nat Commun; 2024 May; 15(1):4055. PubMed ID: 38744843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scTIGER: A Deep-Learning Method for Inferring Gene Regulatory Networks from Case versus Control scRNA-seq Datasets.
    Dautle M; Zhang S; Chen Y
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
    Aubin-Frankowski PC; Vert JP
    Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
    Zheng X; Huang Y; Zou X
    PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks.
    Shrivastava H; Zhang X; Song L; Aluru S
    J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets.
    Zhang S; Pyne S; Pietrzak S; Halberg S; McCalla SG; Siahpirani AF; Sridharan R; Roy S
    Nat Commun; 2023 May; 14(1):3064. PubMed ID: 37244909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks.
    Spurney RJ; Van den Broeck L; Clark NM; Fisher AP; de Luis Balaguer MA; Sozzani R
    Plant J; 2020 Feb; 101(3):716-730. PubMed ID: 31571287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning of gene relationships from single cell time-course expression data.
    Yuan Y; Bar-Joseph Z
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.
    Li Y; Liu D; Li T; Zhu Y
    BMC Bioinformatics; 2020 Jan; 21(1):12. PubMed ID: 31918656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell causal network inferred by cross-mapping entropy.
    Li L; Xia R; Chen W; Zhao Q; Tao P; Chen L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data.
    Xu Y; Chen J; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.