BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35213534)

  • 1. Causal reasoning over knowledge graphs leveraging drug-perturbed and disease-specific transcriptomic signatures for drug discovery.
    Domingo-Fernández D; Gadiya Y; Patel A; Mubeen S; Rivas-Barragan D; Diana CW; Misra BB; Healey D; Rokicki J; Colluru V
    PLoS Comput Biol; 2022 Feb; 18(2):e1009909. PubMed ID: 35213534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug2ways: Reasoning over causal paths in biological networks for drug discovery.
    Rivas-Barragan D; Mubeen S; Guim Bernat F; Hofmann-Apitius M; Domingo-Fernández D
    PLoS Comput Biol; 2020 Dec; 16(12):e1008464. PubMed ID: 33264280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge graphs and their applications in drug discovery.
    MacLean F
    Expert Opin Drug Discov; 2021 Sep; 16(9):1057-1069. PubMed ID: 33843398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From drug repositioning to target repositioning: prediction of therapeutic targets using genetically perturbed transcriptomic signatures.
    Namba S; Iwata M; Yamanishi Y
    Bioinformatics; 2022 Jun; 38(Suppl 1):i68-i76. PubMed ID: 35758779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.
    Aliper A; Plis S; Artemov A; Ulloa A; Mamoshina P; Zhavoronkov A
    Mol Pharm; 2016 Jul; 13(7):2524-30. PubMed ID: 27200455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery.
    Wang Y; Yella J; Jegga AG
    Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion.
    Lan Y; He S; Liu K; Zeng X; Liu S; Zhao J
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):335. PubMed ID: 34844576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-driven drug repurposing using a comprehensive drug knowledge graph.
    Zhu Y; Che C; Jin B; Zhang N; Su C; Wang F
    Health Informatics J; 2020 Dec; 26(4):2737-2750. PubMed ID: 32674665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward better drug discovery with knowledge graph.
    Zeng X; Tu X; Liu Y; Fu X; Su Y
    Curr Opin Struct Biol; 2022 Feb; 72():114-126. PubMed ID: 34649044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Target Discovery and Drug Repurposing for Coronaviruses: Study Involving a Knowledge Graph-Based Approach.
    Lou P; Fang A; Zhao W; Yao K; Yang Y; Hu J
    J Med Internet Res; 2023 Oct; 25():e45225. PubMed ID: 37862061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs.
    Xiong Z; Huang F; Wang Z; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2623-2631. PubMed ID: 34375284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing in silico drug discovery: simulation of connected differential expression signatures and applications to benchmarking.
    Gonzalez Gomez C; Rosa-Calatrava M; Fouret J
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-driven knowledge graph filtering improves prioritizing drugs for repurposing.
    Ratajczak F; Joblin M; Ringsquandl M; Hildebrandt M
    BMC Bioinformatics; 2022 Mar; 23(1):84. PubMed ID: 35246025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic-Guided Drug Repositioning Supported by a New Bioinformatics Search Tool: geneXpharma.
    Turanli B; Gulfidan G; Arga KY
    OMICS; 2017 Oct; 21(10):584-591. PubMed ID: 29049014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning identifies explainable reasoning paths of mechanism of action for drug repurposing from multilayer biological network.
    Yang J; Li Z; Wu WKK; Yu S; Xu Z; Chu Q; Zhang Q
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36347526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic integration of biomedical knowledge prioritizes drugs for repurposing.
    Himmelstein DS; Lizee A; Hessler C; Brueggeman L; Chen SL; Hadley D; Green A; Khankhanian P; Baranzini SE
    Elife; 2017 Sep; 6():. PubMed ID: 28936969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KGML-xDTD: a knowledge graph-based machine learning framework for drug treatment prediction and mechanism description.
    Ma C; Zhou Z; Liu H; Koslicki D
    Gigascience; 2022 Dec; 12():. PubMed ID: 37602759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations.
    Bakal G; Talari P; Kakani EV; Kavuluru R
    J Biomed Inform; 2018 Jun; 82():189-199. PubMed ID: 29763706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional Neural Network and Bidirectional Long Short-Term Memory-Based Method for Predicting Drug-Disease Associations.
    Xuan P; Ye Y; Zhang T; Zhao L; Sun C
    Cells; 2019 Jul; 8(7):. PubMed ID: 31336774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.