BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35213534)

  • 41. Learning Drug-Disease-Target Embedding (DDTE) from knowledge graphs to inform drug repurposing hypotheses.
    Moon C; Jin C; Dong X; Abrar S; Zheng W; Chirkova RY; Tropsha A
    J Biomed Inform; 2021 Jul; 119():103838. PubMed ID: 34119691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding.
    Chen H; Cheng F; Li J
    PLoS Comput Biol; 2020 Jul; 16(7):e1008040. PubMed ID: 32667925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel computational approach for drug repurposing using systems biology.
    Peyvandipour A; Saberian N; Shafi A; Donato M; Draghici S
    Bioinformatics; 2018 Aug; 34(16):2817-2825. PubMed ID: 29534151
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery?
    Sahu NU; Kharkar PS
    Curr Top Med Chem; 2016; 16(19):2069-77. PubMed ID: 26881717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network.
    Zhang W; Yue X; Huang F; Liu R; Chen Y; Ruan C
    Methods; 2018 Aug; 145():51-59. PubMed ID: 29879508
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graph theory enables drug repurposing--how a mathematical model can drive the discovery of hidden mechanisms of action.
    Gramatica R; Di Matteo T; Giorgetti S; Barbiani M; Bevec D; Aste T
    PLoS One; 2014; 9(1):e84912. PubMed ID: 24416311
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets.
    Mottini C; Napolitano F; Li Z; Gao X; Cardone L
    Semin Cancer Biol; 2021 Jan; 68():59-74. PubMed ID: 31562957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Attention-based Knowledge Graph Representation Learning for Predicting Drug-drug Interactions.
    Su X; Hu L; You Z; Hu P; Zhao B
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35453147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HiAM: A Hierarchical Attention based Model for knowledge graph multi-hop reasoning.
    Ma T; Lv S; Huang L; Hu S
    Neural Netw; 2021 Nov; 143():261-270. PubMed ID: 34157650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and application of a knowledge network for automatic prioritization of drug mechanisms.
    Mayers M; Tu R; Steinecke D; Li TS; Queralt-Rosinach N; Su AI
    Bioinformatics; 2022 May; 38(10):2880-2891. PubMed ID: 35561182
    [TBL] [Abstract][Full Text] [Related]  

  • 51. BiRWDDA: A Novel Drug Repositioning Method Based on Multisimilarity Fusion.
    Yan CK; Wang WX; Zhang G; Wang JL; Patel A
    J Comput Biol; 2019 Nov; 26(11):1230-1242. PubMed ID: 31140857
    [No Abstract]   [Full Text] [Related]  

  • 52. Natural Language Processing for Drug Discovery Knowledge Graphs: Promises and Pitfalls.
    Jeynes JCG; James T; Corney M
    Methods Mol Biol; 2024; 2716():223-240. PubMed ID: 37702942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Knowledge Graphs and Their Applications in Drug Discovery.
    James T; Hennig H
    Methods Mol Biol; 2024; 2716():203-221. PubMed ID: 37702941
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implications of topological imbalance for representation learning on biomedical knowledge graphs.
    Bonner S; Kirik U; Engkvist O; Tang J; Barrett IP
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35880623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery.
    Tong X; Qu N; Kong X; Ni S; Zhou J; Wang K; Zhang L; Wen Y; Shi J; Zhang S; Li X; Zheng M
    Nat Commun; 2024 Jun; 15(1):5378. PubMed ID: 38918369
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Bayesian approach to accurate and robust signature detection on LINCS L1000 data.
    Qiu Y; Lu T; Lim H; Xie L
    Bioinformatics; 2020 May; 36(9):2787-2795. PubMed ID: 32003771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Knowledge Graph-Enhanced Tensor Factorisation Model for Discovering Drug Targets.
    Ye C; Swiers R; Bonner S; Barrett I
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3070-3080. PubMed ID: 35939454
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PharmGWAS: a GWAS-based knowledgebase for drug repurposing.
    Kang H; Pan S; Lin S; Wang YY; Yuan N; Jia P
    Nucleic Acids Res; 2024 Jan; 52(D1):D972-D979. PubMed ID: 37831083
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Signatures of cell death and proliferation in perturbation transcriptomics data-from confounding factor to effective prediction.
    Szalai B; Subramanian V; Holland CH; Alföldi R; Puskás LG; Saez-Rodriguez J
    Nucleic Acids Res; 2019 Nov; 47(19):10010-10026. PubMed ID: 31552418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.