BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35213807)

  • 1. A Rational Designed Bioorthogonal Surface-Enhanced Raman Scattering Nanoprobe for Quantitatively Visualizing Endogenous Hydrogen Sulfide in Single Living Cells.
    Zhong Q; Zhang R; Yang B; Tian T; Zhang K; Liu B
    ACS Sens; 2022 Mar; 7(3):893-899. PubMed ID: 35213807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal Standard Assisted Surface-Enhanced Raman Scattering Nanoprobe with 4-NTP as Recognition Unit for Ratiometric Imaging Hydrogen Sulfide in Living Cells.
    Chen S; Fan J; Lv M; Hua C; Liang G; Zhang S
    Anal Chem; 2022 Oct; 94(42):14675-14681. PubMed ID: 36222749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High sensitivity and non-background SERS detection of endogenous hydrogen sulfide in living cells using core-shell nanoparticles.
    Zhang WS; Wang YN; Xu ZR
    Anal Chim Acta; 2020 Jan; 1094():106-112. PubMed ID: 31761035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell membrane-targeted surface enhanced Raman scattering nanoprobes for the monitoring of hydrogen sulfide secreted from living cells.
    Chen HY; Zhu SC; Xu HB; Ye MJ; Huang WF; He Y; Qian RC; Li DW
    Biosens Bioelectron; 2024 Apr; 250():116054. PubMed ID: 38295581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of thiol and alkynyl contained SERS reporter molecular and its usage in assembly of polydopamine protected bioorthogonal SERS tag for live cell imaging.
    Zhang L; Zhang R; Gao M; Zhang X
    Talanta; 2016 Sep; 158():315-321. PubMed ID: 27343611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Block copolymer-templated surface-enhanced Raman scattering-active nanofibers for hydrogen sulfide detection.
    Zhao X; Wang J; Jia Y
    Talanta; 2024 Apr; 270():125608. PubMed ID: 38160488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Background-Free SERS Nanosensor for Endogenous Hydrogen Sulfide Detection Based on Prussian Blue-Coated Gold Nanobipyramids.
    Chen J; Cheng L; Yang Y; Liu Y; Su C; He Y; You M; Lin Z; Hong G
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14467-14473. PubMed ID: 38491944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioorthogonal surface-enhanced Raman scattering flower-like nanoprobe with embedded standards for accurate cancer cell imaging.
    Chen S; Lv M; Fan J; Huang Y; Liang G; Zhang S
    Anal Chim Acta; 2023 Mar; 1246():340895. PubMed ID: 36764777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing of Hydrogen Sulfide Gas in the Raman-Silent Region Based on Gold Nano-Bipyramids (Au NBPs) Encapsulated by Zeolitic Imidazolate Framework-8.
    Chen J; Guo L; Chen L; Qiu B; Hong G; Lin Z
    ACS Sens; 2020 Dec; 5(12):3964-3970. PubMed ID: 33275846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous SiO
    Si Y; Li L; Qin X; Bai Y; Li J; Yin Y
    Anal Chim Acta; 2019 May; 1057():1-10. PubMed ID: 30832907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plasmonic Au-Ag janus nanoprobe for monitoring endogenous hydrogen sulfide generation in living cells.
    Wang J; Luo D; Cai Y; Li XL; Chen HY; Xu JJ
    Biosens Bioelectron; 2022 Oct; 213():114422. PubMed ID: 35667290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.
    Chen M; Zhang L; Yang B; Gao M; Zhang X
    Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of Endogenous Hydrogen Sulfide in Living Cells Using Surface-Enhanced Raman Scattering.
    Li DW; Qu LL; Hu K; Long YT; Tian H
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12758-61. PubMed ID: 26314839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkyne-based surface-enhanced Raman scattering nanoprobe for ratiometric imaging analysis of caspase 3 in live cells and tissues.
    Qin X; Lyu M; Si Y; Yang J; Wu Z; Li J
    Anal Chim Acta; 2018 Dec; 1043():115-122. PubMed ID: 30392659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of sulfide in complex biofilm matrices using silver-coated, 4-mercaptobenzonitrile-modified gold nanoparticles, encapsulated in ZIF-8 as surface-enhanced Raman scattering nanoprobe.
    He J; Qi P; Zhang D; Zeng Y; Zhao P; Wang P
    Mikrochim Acta; 2023 Nov; 190(12):475. PubMed ID: 37991569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Assessment of Copper(II) in Wilson's Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering.
    Feng H; Fu Q; Du W; Zhu R; Ge X; Wang C; Li Q; Su L; Yang H; Song J
    ACS Nano; 2021 Feb; 15(2):3402-3414. PubMed ID: 33508938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biocompatible ratiometric fluorescent nanoprobe for intracellular hydrogen sulfide accurate detection based on rare earth nanoparticle.
    Li Z; Feng G; Zhai P; Jiang Y; Fan M; Zhao C; Xu Z; Wang X; Ying M; Yong KT; Dong B; Xu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121532. PubMed ID: 35752038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ ratiometric SERS imaging of intracellular protease activity for subtype discrimination of human breast cancer.
    Zhong Q; Zhang K; Huang X; Lu Y; Zhao J; He Y; Liu B
    Biosens Bioelectron; 2022 Jul; 207():114194. PubMed ID: 35325718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A ratiometric Raman probe for live-cell imaging of hydrogen sulfide in mitochondria by stimulated Raman scattering.
    Zeng C; Hu F; Long R; Min W
    Analyst; 2018 Oct; 143(20):4844-4848. PubMed ID: 30246812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Enhanced Raman Scattering Bioimaging with an Ultrahigh Signal-to-Background Ratio under Ambient Light.
    Zhu S; Deng B; Liu F; Li J; Lin L; Ye J
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):8876-8887. PubMed ID: 35157434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.