These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35213807)

  • 101. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Gold nanocage-based surface-enhanced Raman scattering probes for long-term monitoring of intracellular microRNA during bone marrow stem cell differentiation.
    Cao X; Wang Z; Bi L; Bi C; Du Q
    Nanoscale; 2020 Jan; 12(3):1513-1527. PubMed ID: 31854413
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 104. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Quantitative Monitoring of Hypoxia-Induced Intracellular Acidification in Lung Tumor Cells and Tissues Using Activatable Surface-Enhanced Raman Scattering Nanoprobes.
    Ma D; Zheng J; Tang P; Xu W; Qing Z; Yang S; Li J; Yang R
    Anal Chem; 2016 Dec; 88(23):11852-11859. PubMed ID: 27802014
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS).
    Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L
    Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140
    [TBL] [Abstract][Full Text] [Related]  

  • 107. In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants.
    Son WK; Choi YS; Han YW; Shin DW; Min K; Shin J; Lee MJ; Son H; Jeong DH; Kwak SY
    Nat Nanotechnol; 2023 Feb; 18(2):205-216. PubMed ID: 36522556
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes.
    Huefner A; Septiadi D; Wilts BD; Patel II; Kuan WL; Fragniere A; Barker RA; Mahajan S
    Methods; 2014 Jul; 68(2):354-63. PubMed ID: 24583117
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Accurate quantitative detection of cell surface sialic acids with a background-free SERS probe.
    He XN; Wang YN; Wang Y; Xu ZR
    Talanta; 2020 Mar; 209():120579. PubMed ID: 31892066
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Bioorthogonal SERS Nanotags as a Precision Theranostic Platform for
    Wang J; Liang D; Jin Q; Feng J; Tang X
    Bioconjug Chem; 2020 Feb; 31(2):182-193. PubMed ID: 31940174
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles.
    Schwartzberg AM; Oshiro TY; Zhang JZ; Huser T; Talley CE
    Anal Chem; 2006 Jul; 78(13):4732-6. PubMed ID: 16808490
    [TBL] [Abstract][Full Text] [Related]  

  • 112. In Situ Monitoring of Hydrogen Peroxide Released from Living Cells Using a ZIF-8-Based Surface-Enhanced Raman Scattering Sensor.
    Jiang L; He CH; Chen HY; Xi CY; Fodjo EK; Zhou ZR; Qian RC; Li DW; Hafez ME
    Anal Chem; 2021 Sep; 93(37):12609-12616. PubMed ID: 34498868
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Recent Progress of SERS Nanoprobe for pH Detecting and Its Application in Biological Imaging.
    Zhang L; Zhao Q; Jiang Z; Shen J; Wu W; Liu X; Fan Q; Huang W
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436084
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Combination of Live Cell Surface-Enhanced Raman Scattering Imaging with Chemometrics to Study Intracellular Nanoparticle Dynamics.
    Lenzi E; Henriksen-Lacey M; Molina B; Langer J; de Albuquerque CDL; Jimenez de Aberasturi D; Liz-Marzán LM
    ACS Sens; 2022 Jun; 7(6):1747-1756. PubMed ID: 35671439
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Rapid intracellular pH measurement based on electroporation- surface-enhanced Raman scattering.
    Chen W; Weng S; Zhong W; Huang H; Wei G; Yang J; Zhang Z; Chen Q; Lin J; Yu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jun; 321():124758. PubMed ID: 38963945
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Expanding the Range of Bioorthogonal Tags for Multiplex Stimulated Raman Scattering Microscopy.
    Murphy N; Tipping WJ; Braddick HJ; Wilson LT; Tomkinson NCO; Faulds K; Graham D; Farràs P
    Angew Chem Int Ed Engl; 2023 Nov; 62(48):e202311530. PubMed ID: 37821742
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Direct and Simultaneous Identification of Multiple Mitochondrial Reactive Oxygen Species in Living Cells Using a SERS Borrowing Strategy.
    Lin S; Ze H; Zhang XG; Zhang YJ; Song J; Zhang H; Zhong HL; Yang ZL; Yang C; Li JF; Zhu Z
    Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202203511. PubMed ID: 35383412
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems.
    Liu Y; Li M; Liu H; Kang C; Yu X
    Int J Nanomedicine; 2023; 18():6883-6900. PubMed ID: 38026519
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Temperature-Activated Near-Infrared-II Fluorescence and SERS Dynamic-Reversible Probes for Long-Term Assessment of Osteoarthritis In Vivo.
    Li Q; Xiao S; Ge X; Zheng L; Wu Y; Du W; Chen L; Yang H; Song J
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408792. PubMed ID: 38850105
    [TBL] [Abstract][Full Text] [Related]  

  • 120. An Activated Structure Transformable Ratiometric Photoacoustic Nanoprobe for Real-Time Dynamic Monitoring of H
    Wen X; Bi S; Wang C; Zeng S
    Nano Lett; 2023 Nov; 23(22):10642-10650. PubMed ID: 37955992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.