These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 35214290)

  • 1. PPG EduKit: An Adjustable Photoplethysmography Evaluation System for Educational Activities.
    Solé Morillo Á; Lambert Cause J; Baciu VE; da Silva B; Garcia-Naranjo JC; Stiens J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Principles of Hearable Photoplethysmography Analysis and Applications in Physiological Monitoring-A Review.
    Azudin K; Gan KB; Jaafar R; Ja'afar MH
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Smart Mandibular Advancement Device for Intraoral Cardiorespiratory Monitoring.
    Nabavi S; Debbarma S; Bhadra S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4079-4084. PubMed ID: 33018895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffuse transmittance visible spectroscopy using smartphone flashlight for photoplethysmography and vital signs measurements.
    Bachir W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123181. PubMed ID: 37506454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms.
    Baciu VE; Lambert Cause J; Solé Morillo Á; García-Naranjo JC; Stiens J; da Silva B
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmography with electrocardiography.
    Alqudah AM; Qananwah Q; M K Dagamseh A; Qazan S; Albadarneh A; Alzyout A
    Med Hypotheses; 2020 Oct; 143():109870. PubMed ID: 32470788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability.
    Bozkurt MR; Uçar MK; Bozkurt F; Bilgin C
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):959-979. PubMed ID: 31515685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR).
    Bradke B; Everman B
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32260393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced detection of sleep apnoea using heart-rate, respiration effort and oxygen saturation derived from a photoplethysmography sensor.
    Jayawardhana M; de Chazal P
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():121-124. PubMed ID: 29059825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of reflectance photoplethysmography on detecting cuff-induced vascular occlusions.
    Abay TY; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():861-4. PubMed ID: 26736398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG).
    Alam J; Khan MF; Khan MA; Singh R; Mundazeer M; Kumar P
    J Cardiovasc Transl Res; 2024 Jun; 17(3):669-684. PubMed ID: 38010481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive monitoring by photoplethysmography.
    Sahni R
    Clin Perinatol; 2012 Sep; 39(3):573-83. PubMed ID: 22954270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization Study of Neck Photoplethysmography.
    Garcia-Lopez I; Imtiaz SA; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4355-4358. PubMed ID: 30441318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Multi-Wavelength Quality Assessment of Photoplethysmography Signals Using Modulation Spectrum Shape Features.
    Tiwari A; Gray G; Bondi P; Mahnam A; Falk TH
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion Artifact Removal of Photoplethysmogram (PPG) Signal.
    Majeed IA; Jos S; Arora R; Choi K; Bae S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5576-5580. PubMed ID: 31947119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal.
    Motin MA; Karmakar CK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3817-3820. PubMed ID: 28269118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Photoplethysmography-based Physiological Measurement and Estimation, Part 1: Single Input Methods.
    Johnson MSS; Mikael Eklund J
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():923-927. PubMed ID: 33018135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.