These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35214298)

  • 1. The Wavelength-Shifting Optical Module.
    Bastian-Querner B; Binn LS; Böser S; Brostean-Kaiser J; Hebecker D; Helbing K; Karg T; Köpke L; Kowalski M; Peiffer P; Pollmann A; Rack-Helleis J; Rongen M; Schlickmann L; Thomas F; Vocke A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.
    Habte F; Foudray AM; Olcott PD; Levin CS
    Phys Med Biol; 2007 Jul; 52(13):3753-72. PubMed ID: 17664575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The timing resolution of scintillation-detector systems: Monte Carlo analysis.
    Choong WS
    Phys Med Biol; 2009 Nov; 54(21):6495-513. PubMed ID: 19820267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.
    Lawrence WG; Varadi G; Entine G; Podniesinski E; Wallace PK
    Cytometry A; 2008 Aug; 73(8):767-76. PubMed ID: 18612992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance comparison of high quantum efficiency and normal quantum efficiency photomultiplier tubes and position sensitive photomultiplier tubes for high resolution PET and SPECT detectors.
    Yamamoto S; Watabe H; Kato K; Hatazawa J
    Med Phys; 2012 Nov; 39(11):6900-7. PubMed ID: 23127083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of ghosting artifacts from wavelength-shifting fiber neutron detectors.
    Wang CL; Clonts LG; Diawara Y; Hannan BW; Hodges JP
    Rev Sci Instrum; 2013 Jan; 84(1):013308. PubMed ID: 23387643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infused ice can multiply IceCube's sensitivity.
    Bartos I; Marka Z; Marka S
    Nat Commun; 2018 Mar; 9(1):1236. PubMed ID: 29581488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of silicon photomultipliers for multiphoton and laser scanning microscopy.
    Giacomelli MG
    J Biomed Opt; 2019 Oct; 24(10):1-7. PubMed ID: 31625323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Readout of the Optical PET (OPET) Detector.
    Prout DL; Silverman RW; Chatziioannou A
    IEEE Trans Nucl Sci; 2005 Feb; 52(1):28-32. PubMed ID: 16429600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Cherenkov bars for the optical part of the time-of-flight detector in Geant4.
    Nozka L; Brandt A; Rijssenbeek M; Sykora T; Hoffman T; Griffiths J; Steffens J; Hamal P; Chytka L; Hrabovsky M
    Opt Express; 2014 Nov; 22(23):28984-96. PubMed ID: 25402137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.
    Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A
    Med Phys; 2015 Feb; 42(2):600-605. PubMed ID: 28102604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel light-guide-PMT geometries to reduce dead edges of a scintillation camera.
    Wang B; Kreuger R; Beekman FJ; Goorden MC
    Phys Med; 2018 Apr; 48():84-90. PubMed ID: 29728234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy.
    Linares Rosales HM; Duguay-Drouin P; Archambault L; Beddar S; Beaulieu L
    Med Phys; 2019 May; 46(5):2412-2421. PubMed ID: 30891803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CHERENCUBE: concept definition and implementation challenges of a Cherenkov-based detector block for PET.
    Somlai-Schweiger I; Ziegler SI
    Med Phys; 2015 Apr; 42(4):1825-35. PubMed ID: 25832073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Step-scan Michelson Fourier-transform spectrometer for optical emission spectroscopy in UV-VIS spectral range.
    Ďurian M; Sámel M; Matejčík Š
    Rev Sci Instrum; 2020 Mar; 91(3):033102. PubMed ID: 32259943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration.
    Beddar AS; Mackie TR; Attix FH
    Phys Med Biol; 1992 Oct; 37(10):1883-900. PubMed ID: 1438554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Prototype TOF PET Detector Module Using a Micro-Channel Plate Photomultiplier Tube with Waveform Sampling.
    Kim H; Chen CT; Frisch H; Tang F; Kao CM
    Nucl Instrum Methods Phys Res A; 2012 Jan; 662(1):26-32. PubMed ID: 22347762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo Simulation Study on the Time Resolution of a PMT-Quadrant-Sharing LSO Detector Block for Time-of-Flight PET.
    Liu S; Li H; Zhang Y; Ramirez RA; Baghaei H; An S; Wang C; Liu J; Wong WH
    IEEE Trans Nucl Sci; 2009; 56(5):2614-2620. PubMed ID: 20559457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel photomultiplier tube neutron time-of-flight detector.
    Glebov VY; Stoeckl C; Forrest CJ; Knauer JP; Mannion OM; Romanofsky MH; Sangster TC; Regan SP
    Rev Sci Instrum; 2021 Jan; 92(1):013509. PubMed ID: 33514216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-sensitivity low-noise photodetector using a large-area silicon photomultiplier.
    Masuda T; Hiramoto A; Ang DG; Meisenhelder C; Panda CD; Sasao N; Uetake S; Wu X; DeMille DP; Doyle JM; Gabrielse G; Yoshimura K
    Opt Express; 2023 Jan; 31(2):1943-1957. PubMed ID: 36785218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.