These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35214356)

  • 1. Toward the Personalization of Biceps Fatigue Detection Model for Gym Activity: An Approach to Utilize Wearables' Data from the Crowd.
    Elshafei M; Costa DE; Shihab E
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Detecting Biceps Muscle Fatigue in Gym Activity Using Wearables.
    Elshafei M; Shihab E
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Impact of Biceps Muscle Fatigue in Human Activity Recognition.
    Elshafei M; Costa DE; Shihab E
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Analysis of Artificial Neural Networks Performance for Physical Activity Recognition Using Belt and Wristband Devices.
    Qi J; Yang Y; Peng X; Newcombe L; Simpson A; Yang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2492-2495. PubMed ID: 31946403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized Human Activity Recognition using Wearables: A Manifold Learning-based Knowledge Transfer.
    Saeedi R; Sasani K; Norgaard S; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1193-1196. PubMed ID: 30440604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Meta-Learning Approach for Fast Personalization of Modality Translation Models in Wearable Physiological Sensing.
    Akbari A; Martinez J; Jafari R
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1516-1527. PubMed ID: 34398767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personalizing Activity Recognition Models Through Quantifying Different Types of Uncertainty Using Wearable Sensors.
    Akbari A; Jafari R
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2530-2541. PubMed ID: 31905130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex Deep Neural Networks from Large Scale Virtual IMU Data for Effective Human Activity Recognition Using Wearables.
    Kwon H; Abowd GD; Plötz T
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Active Learning Framework for Cross-Subject Human Activity Recognition from Surface Electromyography.
    Ding Z; Hu T; Li Y; Li L; Li Q; Jin P; Yi C
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HARNAS: Human Activity Recognition Based on Automatic Neural Architecture Search Using Evolutionary Algorithms.
    Wang X; Wang X; Lv T; Jin L; He M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-to-End Versatile Human Activity Recognition with Activity Image Transfer Learning.
    Ye Y; Liu Z; Huang Z; Pan T; Wan Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1128-1131. PubMed ID: 34891486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Ensemble Based on Extreme Learning Machine for Sensor-Based Human Activity Recognition.
    Tian Y; Zhang J; Chen L; Geng Y; Wang X
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Machine Learning Approach for Human Activity Recognition.
    Papoutsis A; Botilias G; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WMNN: Wearables-Based Multi-Column Neural Network for Human Activity Recognition.
    Tang C; Chen X; Gong J; Occhipinti LG; Gao S
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):339-350. PubMed ID: 36327173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yoga Posture Recognition and Quantitative Evaluation with Wearable Sensors Based on Two-Stage Classifier and Prior Bayesian Network.
    Wu Z; Zhang J; Chen K; Fu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals.
    Hu J
    Front Comput Neurosci; 2017; 11():72. PubMed ID: 28824409
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.